摘要
为实现对动态障碍物的检测和跟踪,提出一种基于LabVIEW和单线激光雷达自主动态障碍物的检测方法。通过改进的DBSCAN自适应动态阈值算法对雷达点云进行聚类,使用最近邻算法的思想进行连续两帧雷达点云的数据关联,采用卡尔曼滤波对障碍物轨迹进行跟踪。实验结果表明:在低速驾驶的条件下,该方法能够有效识别车辆前方30 m的移动障碍物并检测其位置和速度。
In order to detect and track dynamic obstacles,a method based on LabVIEW and single line lidar is proposed.The radar point cloud is clustered through the improved DBSCAN adaptive dynamic threshold algorithm,the idea of nearest neighbor algorithm is used to correlate the data of two consecutive frames of radar point cloud,and Kalman filter is used to track the obstacle trajectory.The experimental results show that the method can effectively identify the moving obstacles thirty meters in front of the vehicle,and detect their position and speed under the condition of low-speed driving.
作者
袁春
曾凡
李昊
胡萌
徐哲
YUAN Chun;ZENG Fan;LI Hao;HU Meng;XU Zhe(Key Laboratory of Advanced Manufacturing Technology of Auto Parts,Ministry of Education,Chongqing University of Technology,Chongqing 400054,China;Engineering Research Center of Ministry of Education of Mechanical Testing Technology and Equipment,Chongqing University of Technology,Chongqing 400054,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2021年第2期8-16,共9页
Journal of Chongqing University of Technology:Natural Science
基金
重庆市技术创新与应用发展专项重点项目(cstc2019jscx-mbdx X0052)
重庆市教委科学技术研究项目(KJQN201801101)
重庆市自然科学基金项目(cstc2019jcyj-msxmX0119)