期刊文献+

Joint learning based on multi-shaped filters for knowledge graph completion 被引量:1

下载PDF
导出
摘要 To solve the problem of missing many valid triples in knowledge graphs(KGs),a novel model based on a convolutional neural network(CNN)called ConvKG is proposed,which employs a joint learning strategy for knowledge graph completion(KGC).Related research work has shown the superiority of convolutional neural networks(CNNs)in extracting semantic features of triple embeddings.However,these researches use only one single-shaped filter and fail to extract semantic features of different granularity.To solve this problem,ConvKG exploits multi-shaped filters to co-convolute on the triple embeddings,joint learning semantic features of different granularity.Different shaped filters cover different sizes on the triple embeddings and capture pairwise interactions of different granularity among triple elements.Experimental results confirm the strength of joint learning,and compared with state-of-the-art CNN-based KGC models,ConvKG achieves the better mean rank(MR)and Hits@10 metrics on dataset WN18 RR,and the better MR on dataset FB15k-237.
作者 Li Shaojie Chen Shudong Ouyang Xiaoye Gong Lichen 李少杰;Chen Shudong;Ouyang Xiaoye;Gong Lichen(School of Microelectronics,University of Chinese Academy of Sciences,Beijing 100049,P.R.China;Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,P.R.China)
出处 《High Technology Letters》 EI CAS 2021年第1期43-52,共10页 高技术通讯(英文版)
基金 Supported by the National Natural Science Foundation of China(No.61876144)。
  • 相关文献

参考文献4

二级参考文献13

共引文献36

同被引文献26

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部