摘要
在现有研究中,通常采用无记忆效应的马尔可夫过程模型来描述光电设备的随机退化,忽略了其退化过程中状态之间的长期相关性。鉴于此,首先,基于非线性分数布朗运动提出了一种具有记忆效应的随机退化模型,用于描述测量误差与随机效应影响下的光电设备退化过程;在此基础上,基于弱收敛理论推导得到了首达时间意义下设备剩余寿命的近似解析式。其次,分别采用极大似然估计算法与贝叶斯推理完成了模型参数的离线估计与实时更新,进而实现剩余寿命的自适应预测。最后,将所提方法应用于GaAs激光器的性能监测数据中,实验结果表明所提方法能有效提高光电设备剩余寿命的预测精度。
In the existing studies, the Markov process model without memory effects is usually used to describe the random degradation of optoelectronic equipment, ignoring the long-term correlation of states in the degradation process. In view of this, we firstly proposed a random degradation model with memory effects based on nonlinear fractional Brownian motion to describe the degradation process of optoelectronic equipment under the influence of measurement errors and random effects. On this basis, we employed the weak convergence theory to derive the approximate analytical formula of the remaining useful life of equipment in the sense of the first hitting time. Secondly, we adopted the maximum likelihood estimation algorithm and Bayesian inference to complete the offline estimation and real-time update of the model parameters, thus realizing the adaptive prediction of the remaining useful life. Finally, the proposed method was applied to the performance monitoring data of GaAs lasers. The experimental results show that the proposed method can effectively improve the prediction accuracy of the remaining useful life of optoelectronic equipment.
作者
高旭东
胡昌华
张建勋
杜党波
裴洪
Gao Xudong;Hu Changhua;Zhang Jianxun;Du Dangbo;Pei Hong(College of Missile Engineering,Rocket Force University of Engineering,Xi'an,Shaanxi 710025,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2020年第24期136-145,共10页
Acta Optica Sinica
基金
国家自然科学基金(61833016,61900376,61922089,61773386,61673311,61703244)
陕西省自然科学基金(2020JQ-489)。
关键词
光学器件
剩余寿命
分数布朗运动
弱收敛理论
极大似然估计
贝叶斯推理
optical device
remaining useful life
fractional Brownian motion
weak convergence theory
maximum likelihood estimation
Bayesian inference