期刊文献+

基于地平面的单目视觉辅助激光雷达SLAM研究 被引量:12

Research on Ground-Plane-Based Monocular Aided LiDAR SLAM
原文传递
导出
摘要 融合视觉传感器和激光雷达可以实现优于单一传感器的同时定位与建图(SLAM)系统,现有的视觉和激光雷达融合算法仍然存在计算复杂度高、系统精度及稳定性受错误的深度匹配影响等问题。为了更加高效、鲁棒地融合视觉和激光雷达的信息,充分利用图像和激光点云中的地平面信息,提出了高效的视觉辅助激光雷达SLAM算法。首先,从激光点云中分割出地面点云用于提取图像中的地面ORB特征点,并通过单应性变换中的交比不变性校验特征匹配,从而高效鲁棒地利用单应性矩阵分解实现绝对尺度相机运动估计。然后,将得到的相机运动估计以李群SE(3)形式进行插值,用于校正激光雷达在自身运动过程中产生的点云畸变。最后,单目相机的运动估计作为初值用于激光里程计的位姿优化。公共数据集KITTI和实际环境的测试结果表明,本文算法可以有效利用相机运动估计对激光点云畸变进行校正,实时准确地实现里程计和建图。 The fusion of a vision sensor and LiDAR can achieve a simultaneous localization and mapping(SLAM) system superior to a single sensor. However, the existing vision and LiDAR fusion algorithms still have such problems as high computational complexity and the system accuracy and stability susceptible to wrong depth matching. In order to combine vision and LiDAR information more efficiently and robustly, we made full use of ground plane information in the images and LiDAR point clouds, and proposed an efficient SLAM algorithm of vision-assisted LiDAR. Firstly, the ground point cloud was segmented from the laser point cloud to extract the ground ORB feature points in the images, and feature matching was verified by the cross-ratio invariance in the homography transformation. In this way, the absolute scale motion estimation of camera was realized efficiently and robustly via the homography matrix decomposition. Then, the obtained motion estimate of the camera was interpolated in the form of Lie group SE(3) to correct the point cloud distortion generated by the LiDAR during its own motion. Finally, the motion estimate of the monocular camera was taken as the initial value for the position optimization of LiDAR odometry. The test results of KITTI, a public data set, and the actual environment show that the proposed algorithm can effectively employ the motion estimate of the camera to correct the point cloud distortion of LiDAR and achieve odometry and mapping in real time and accurately.
作者 晏小彬 彭道刚 戚尔江 Yan Xiaobin;Peng Daogang;Qi Erjiang(College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2020年第24期167-177,共11页 Acta Optica Sinica
基金 上海市科学技术委员会工程技术研究中心项目资助(14DZ2251100)。
关键词 遥感 同时定位与建图 激光雷达 单目相机 单应性变换 交比不变性 remote sensing simultaneous localization and mapping LiDAR monocular camera homography transformation cross-ratio invariance
  • 相关文献

参考文献6

二级参考文献106

  • 1Smith R C, Cheeseman P. On the representation and estimationof spatial uncertainty[J]. International Journal of Robotics Research,1986, 5(4):56-68.
  • 2Smith R, Self M, Cheeseman P. Estimating uncertain spatialrelationships in robotics[M] //Autonomous Robot Vehicles. NewYork: Springer, 1990: 167-193.
  • 3Durrant-Whyte H, Bailey T. Simultaneous localization andmapping: Part I[J]. IEEE Robotics & Automation Magazine,2006, 13(2): 99-110.
  • 4Bailey T, Durrant-Whyte H. Simultaneous localization andmapping(SLAM): Part II[J]. IEEE Robotics & AutomationMagazine, 2006, 13(3): 108-117.
  • 5Hartley R, Zisserman A. Multiple view geometry in computervision[M]. Cambridge: Cambridge University Press, 2004.
  • 6Aulinas J, Petillot Y R, Salvi J, et al. The SLAM problem: asurvey[J]. CCIA, 2008, 184(1): 363-371.
  • 7Ros G, Sappa A, Ponsa D, et al. Visual SLAM for driverlesscars: a brief survey[C] //Proceedings of IEEE Workshop onNavigation, Perception, Accurate Positioning and Mapping forIntelligent Vehicles. Los Alamitos: IEEE Computer SocietyPress, 2012: Article No.3.
  • 8Triggs B, Mclauchlan P F, Hartley R I, et al. Bundle adjustment -a modern synthesis[C] //Proceedings of International Workshopon Vision Algorithms: Theory and Practice. Heidelberg: Springer,1999: 298-372.
  • 9Indelman V, Williams S, Kaess M, et al. Information fusion innavigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems, 2013, 61(8): 721-738.
  • 10Forster C, Carlone L, Dellaert F, et al. IMU preintegration onmanifold for efficient visual-inertial maximum-a-posterioriestimation [C] //Proceedings of Robotics: Science and Systems.Rome: Robotics: Science and Systems, 2015: Article No.6.

共引文献300

同被引文献115

引证文献12

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部