期刊文献+

基于中文医疗知识图谱的智能问答系统设计与实现方法 被引量:10

Design and Implementation of Intelligent Q&A System Based on Chinese Medical Knowledge Graph
下载PDF
导出
摘要 目的:构建基于中文医疗知识图谱的智能问答系统,使人们通过人机交互的方式就能完成简单的自我诊疗。方法:通过词性标注的方法获取用户提出问句中的医疗实体,再利用结合基于共享层的卷积神经网络(SH-CNN)与词频-逆文本频率(TF-IDF)算法的混合算法来计算出系统中与问句语义最接近的问题模板。最后根据获取问题模板的问句类型以及问句中的医疗实体构建cypher语句,从知识图谱中检索答案返回给用户。结果:该系统具有较强的问题解答能力,回答准确率达90.7%。结论:基于医疗知识图谱的问答系统为用户提供了快速准确的答案,可在一定程度上缓解医疗资源紧缺的矛盾,是医疗领域信息化的必然趋势。 Objective:To construct an intelligent Q&A system based on Chinese medical knowledge graph,help people to complete simple self-diagnosis and treatment through human-computer interaction.Methods:Using the method of part of speech tagging to obtain the medical entities in the questions raised by users,and then to calculate the problem template which is closest to the question semantics in the system by combining the hybrid algorithm(SH-CNN)and(TF-IDF)based on Shared layer.Finally to construct the cypher statements according to the question types of the question templates and the medical entities in the questions,and to retrieve the answers from the knowledge graph.Results:The system has a strong ability to answer questions,and the answer accuracy is 90.7%.Conclusion:The Q&A system based on the medical knowledge graph provides users with fast and accurate answers,which can alleviate the contradiction of the shortage of medical resources to a certain extent,and is an inevitable trend of the medical informationalization.
作者 王继伟 梁怀众 樊伟 陈岗 孙凤英 林开标 WANG Ji-wei;LIANG Huai-zhong;FAN Wei(不详;School of Computer and Information Engineering,Xiamen University of Technology,Xiamen 361024,Fujian Province,P.R.C.)
出处 《中国数字医学》 2021年第2期54-58,共5页 China Digital Medicine
基金 国家自然科学基金(编号:61672442) 福建省自然科学基金(编号:2018J01577) 厦门市科技计划(编号:3502Z20209154)。
关键词 知识图谱 智能问答 模板匹配 knowledge graph intelligent Q&A template matching
  • 相关文献

参考文献4

二级参考文献26

  • 1何海芸,袁春风.基于Ontology的领域知识构建技术综述[J].计算机应用研究,2005,22(3):14-18. 被引量:41
  • 2崔蒙,尹爱宁,范为宇,李园白.中医药科学数据建设研究进展[J].中国中医药信息杂志,2006,13(11):104-105. 被引量:20
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:195
  • 4王昊奋.大规模知识图谱技术[J].中国计算机学会通讯,2014,10(3):64-68.
  • 5Ricci F, Rokach L, Shapira B, et al. Recommender systems handbook[ M]. Is. 1. ] :Springer,2010.
  • 6Hill W, Stead L, Rosenstein M, et al. Recommending and eval- uating choices in a virtual community of use [ C ]//Proc of CHI. [s. 1. ]:Is. n. ],1995:194-201.
  • 7Bobadilla J, Ortega F, Hernando A. A collaborative filtering similarity measure based on singularities[ J]. Information Pro- cessing and Management,2012,48:204-217.
  • 8Greg L, Brent S,York J. Amazon. com recommendations:item -to - item collaborative filtering [ J ]. IEEE Internet Compu- ting,2003,7( 1 ) :76-80.
  • 9Jaccard P. The distribution of the flora in the alpine zone[ J]. New Phytologist, 1912,11 ( 2 ) :37-50.
  • 10Tan Pangning, Steinbach M, Kumar V. Introduction to data mining[ M]. Is. 1. ]:Addison Wesley,2005.

共引文献135

同被引文献138

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部