摘要
全国第三次国土调查的一个重要步骤为内业勾绘图斑,需要大量的人力、物力及财力来支撑。利用目视解译的方法进行内业图斑的勾绘,不仅费时费力,而且需要作业人员具有一定的遥感图像解译经验从而满足图斑勾绘的进度及精度。因而,针对全国第三次国土调查,本文基于随机森林的分类方法探讨遥感图像分类的精度是否可以满足全国第三次国土调查图斑勾绘的精度,主要以水体为例。通过利用目视解译的成果来验证随机森林分类的精度,结果表明,随机森林分类的总体精度为91.45%,Kappa系数为0.66,因而,利用随机森林的分类方法可以满足全国第三次国土调查的精度,并且可以精度较高地提取遥感图像中的水体。
One of the important steps of the third national land survey is to draw polygons for the indoor work,which needs a lot of human,material,and financial resources to support.It is time-consuming and laborious to use the method of visual interpretation to draw the polygons and the operators need some experience of remote sensing image interpretation to meet the progress and accuracy of the polygon drawing.Therefore,for the third national land survey,this paper discusses whether the accuracy of remote sensing image classification can meet the accuracy of the third national land survey based on the classification method of random forest,mainly taking water body as an example.By using visual interpretation results to verify the accuracy of the random forest classification,the results show that the overall accuracy of the random forest classification is 91.45%,Kappa coefficient is 0.66,therefore,the use of the random forest classification method can meet the accuracy of the third national land survey,and can extract water from the remote sensing image with high accuracy.
作者
蔡宗磊
刘明松
苗正红
常雪
刘艳慧
CAI Zonglei;LIU Mingsong;MIAO Zhenghong;CHANG Xue;LIU Yanhui(Jilin Water Resource and Hydropower Consultative Company of P.R.China,Changchun 130021,China;Jilin Research and Design Institute of Building Science,Changchun 130021,China;The Second Monitoring and Application Center,CEA,Xi’an 710054,China)
出处
《测绘与空间地理信息》
2021年第3期33-35,共3页
Geomatics & Spatial Information Technology
基金
吉林省科技发展计划项目(20190303067SF)
吉林省水利厅项目(12600220190012)资助。
关键词
国土调查
遥感分类
随机森林
水体提取
national land survey
remote sensing classification
random forest
water body extraction