期刊文献+

一类拟周期哈密顿系统在弱非退化条件下的约化性

The reducibility of a class of quasi-periodic Hamiltonian systems under weaker nondegeneracy conditions
下载PDF
导出
摘要 考虑平衡点附近一类拟周期非线性哈密顿系统在弱非退化条件下的约化性问题.证明在弱非退化条件和非共振条件下,对于绝大多数充分小的参数ε,通过一个拟周期辛变换,非线性哈密顿系统是能约化的. In this paper,we considered the reducibility of a class of quasi-periodic nonlinear Hamiltonian near the equilibrium.Under weaker non-degeneracy conditions and non-resonance conditions,by a quasi-periodic symplectic transformation,we proved that for most sufficiently smallε,the nonlinear Hamiltonian system could be reducible.
作者 朱春鹏 ZHU Chunpeng(School of Mathematics and Statistics, Xuzhou Institute of Technology, Xuzhou 221111, China)
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2021年第2期28-31,共4页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11526177,11501234) 江苏省高校自然科学基金面上项目(18KJB110029)。
关键词 约化性 拟周期 哈密顿系统 弱非退化条件 KAM理论 reducibility quasi-periodic Hamiltonian system weaker non-degeneracy conditions KAM theory
  • 相关文献

参考文献1

二级参考文献9

  • 1Johnson R A, Sell G R. Smoothness of spectral subbundl- es and reducibility of quasiperodic linear differential sys- tems [J]. Journal of Differential Equations, 1981, 41 (2): 262-288.
  • 2Jorba A, Simo C. On the reducibility of linear differential equations with quasiperiodic coefficients [ J]. Journal of Differential Equations, 1992, 98(1) : 111 - 124.
  • 3Xu Junxiang. On the reducibility of a class of linear dif- ferential equations with quasiperiodic coefficients [ J]. Mathematika, 1999, 46(2): 443-451.
  • 4Eliasson L H. Floquet solutions for the 1-dimensional qua- si-periodic Schr6dinger equation [ J]. Communications in Mathematical Physics, 1992, 146(3) : 447 - 482.
  • 5Her Hailong, You Jiangong. Full measure reducibility for generic one-parameter family of quasi-periodic linear sys- tems [ J]. Journal of Dynamics and Differential Equa- tions, 2008, 20(4): 831-866.
  • 6Jorba A, Simo C. On quasi-periodic perturbations of el- liptic equilibrium points [ J]. SlAM Journal on Mathemat- ical Analysis, 1996, 27(6) : 1704 - 1737.
  • 7Wang Xiaocai, Xu Junxiang. On the reducibility of a class of nonlinear quasi-periodic system with small pertur- bation parameter near zero equilibrium point [J]. Nonlin- ear Analysis, 2008, 69(7) : 2318 - 2329.
  • 8Bogoljubov N N, Mitropoliski J A, Samoilenko A M. Methods of accelerated convergence in nonlinear mechan- ics [M]. New York: Springer, 1976.
  • 9Whitney H. Analytical extensions of differentiable func- tions defined in closed sets [ J]. Transactions of the Amer- ican Mathematical Society, 1934, 36(2): 63 -89.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部