期刊文献+

基于网格模型与K-Means算法的交通状态演变特征 被引量:4

Evolution characteristics of traffic state based on grid model and K-Means algorithm
下载PDF
导出
摘要 为利用海量网约车轨迹数据实现对城市交通状态的高效识别与分类,对成都市网约车轨迹数据进行预处理,构建城市交通状态识别网格模型,根据模型判别网格的交通状态。利用K-Means聚类算法对不同时段的交通状态进行聚类,并将交通状态分为持续畅通型、轻度缓行型、持续缓行型、持续拥堵型4种类型,从时间维度和空间维度分析不同网格的交通状态演变特征。结果表明:研究区域内交通状态相对稳定,持续拥堵区域分散,持续缓行区域较为集中。基于网格模型与K-Means算法的交通状态识别方法能够实现对交通状态的快速判别与聚类,可实现对不同城市交通状态的识别。 In order to realize the efficient identification and classification of urban traffic state by using the massive net-charted cars′trajectory data,the net-charted cars′trajectory data of Chengdu City are pre-processed to establish the grid model of the urban traffic state recognition and judge the traffic state of the grid by the model.The K-Means clustering algorithm is used to collect the traffic state data at different periods,then the traffic states are divided into four types of the smooth flow,mild flow,continuous flow and continuous congestion,and finally the evolution characteristics of different grids of traffic states are analyzed from the time and spatial dimensions.The results show that the traffic states in the researched area are relatively stable,the continuous congestion area is scattered,and the slow flow area is more concentrated.So,the recognition method of the traffic states based on the grid model and K-Means algorithm can implement the rapid measurement and clustering of traffic states and also the recognition of traffic states in different cities.
作者 李甜 李瑞玲 张萌萌 宋欣航 王帅琦 LI Tian;LI Ruiling;ZHANG Mengmeng;SONG Xinhang;WANG Shuaiqi(School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan 264209, China;University of Leeds, Southwest Jiaotong University, Chengdu 610000, China)
出处 《山东交通学院学报》 CAS 2021年第1期15-20,共6页 Journal of Shandong Jiaotong University
基金 国家自然科学基金项目(ZR2017MF011)。
关键词 交通状态 网约车轨迹数据 网格模型 K-MEANS traffic sate net-charted cars′trajectory data grid model K-Means
  • 相关文献

参考文献4

二级参考文献51

共引文献28

同被引文献38

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部