期刊文献+

基于NSGA-Ⅱ的偏好分解的多目标优化算法研究

Many-object optimization algorithm with preference based on decomposition
下载PDF
导出
摘要 对于多目标优化问题,传统的优化算法不能够很好地处理复杂的Pareto前沿(PF)上的收敛和分布问题,收敛性和分布性二者不能得到较好的平衡;利用改进后的边界交叉方法,超平面根据补足位移移动,形成新的标准目标向量,使得更多的个体分布落在可行区域;决策者偏好的高维多目标优化算法,能够有效地减小搜索空间,解决算法后期收敛放缓和种群退化的问题。本文提出基于偏好向量分解的多目标优化算法,基于NSGA-Ⅱ的偏好分解的多目标优化算法,将偏好信息作为促进解向最优解移动的条件,能够加快收敛速度,找到接近的真实的Pareto最优前沿解(POF)。本文将(NSGA-RPIPBI)和非支配排序遗传算法(NSGA-Ⅱ)、基于优势和分解的多目标进化算法(MOEA/DD)在多目标问题测试集DTLZ1-4上进行多维目标测试,NSGA-RPIPBI在解集的收敛性和分布性效果更好。 For multi-objective optimization problems,traditional optimization algorithms cannot handle the convergence and distribution problems on the complex Pareto front(PF)effectively,which causes that convergence and distribution cannot be well balanced.Utilizing the improved Penalty-Based Boundary Intersection(PBI),the hyperplane moves according to the complementary displacement to form a new standard coordinate system,so that more individuals are distributed in feasible areas.And for the high-dimensional target optimization algorithm,it can effectively reduce the search space,solving the situation of slow convergence and population degradation in the later stage of the algorithm.The multi-objective optimization algorithm based on preference vector decomposition(NSGA-RPIPBI)proposed in this paper uses preference information as a condition for promoting the solution to move to the optimal solution,which can speed up the convergence and find the close real Pareto Optimal Frontier Solution(POF).In this paper,NSGA-RPIPB,non-dominated sorting genetic algorithm(NSGA-Ⅱ)and multi-objective evolutionary algorithm based on advantage and decomposition(MOEA/DD)are tested on multi-objective problem test set DTLZ1-4,and the results shows that NSGA-RPIPBI has a better convergence and distribution effect on the solution set.
作者 谢倩文 何利力 XIE Qianwen;HE Lili(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《智能计算机与应用》 2020年第9期81-85,共5页 Intelligent Computer and Applications
基金 国家重点研发计划(2018YFB1700702)。
关键词 高维多目标优化 分解 偏好向量 many-object optimization decomposition preference vector
  • 相关文献

参考文献5

二级参考文献43

  • 1Guo K H, Li W L. Combination Rule of D-S Evidence Theory Based on the Strategy of Cross Merging between Evidences. Expert Systems with Applications, 2011, 38 (10) : 13360-13366.
  • 2Xu Z S. A Survey of Preference Relations. International Journal ofGenera[ Systems, 2007, 36(2) : 179-203.
  • 3Xu Z S, Wei C P. A Consistency Improving Method in the Analytic Hierarchy Process. European Journal of Operational Research, 1999, 116(2) : 443-449.
  • 4Xu G L, Liu F. An Approach to Group Decision Making Based on Interval Multiplicative and Fuzzy Preference Relations by Using Pro- jection. Applied Mathematical Modelling, 2013, 37 (6): 3929- 3943.
  • 5Herrera F, Herrera-Viedma E. Choice Functions and Mechanisms for Linguistic Preference Relations. European Journal of Operational Research, 2000, 120(l): 144-161.
  • 6Wang H, Xu Z S. Some Consistency Measures of Extended Hesitant Fuzzy Linguistic Preference Relations. Information Sciences, 2015, 297 : 316-331.
  • 7Zadeh L A. Fuzzy Sets. Information and Control, 1965, 8(3) : 338- 353.
  • 8Turksen I B. Interval Valued Fuzzy Sets Based on Normal Forms Fuzzy Sets and Systems, 1986, 20(2) : 191-210.
  • 9Atanassov K T. Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 1986, 20(1): 87-96.
  • 10Atanassov K, Gargov G. Interval-Valued Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 1989, 31 (3) : 343-349.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部