期刊文献+

基于样本倍增、深度神经网络与SVM的少样本图像识别技术

Image recognition technology for few samples based on sample multiplication,deep neural network and SVM
下载PDF
导出
摘要 基于深度神经网络的图像识别技术在少样本情况下会出现识别准确率下降,甚至训练失败的情况。本文针对该问题,提出了一种将少样本倍增、深度神经网络、SVM(support vector machine)相结合的算法。通过样本倍增提升样本数量,通过深度神经网络训练得到图像的高维特征,通过经典特征提取算法提取图像常规特征,构建包含高维特征和常规特征的支持向量,使用SVM进行训练。实验表明,本文所提方法对于特定样本集,在样本数量为总样本1/40的情况下,识别准确率达到61.36%(仅仅使用YOLO神经网络算法识别准确率为44.08%),大大提高了少样本下目标识别准确率,具有重要的应用价值。 In the case of few samples,the recognition accuracy of image recognition technology based on deep neural network will decrease.To solve this problem,this paper proposes an algorithm which combines sample multiplication,deep neural network and SVM(support vector machine).Firstly,the sample multiplication is used to increase the number of samples.Secondly,deep neural network is used to obtain the high-dimensional features of the image.Thirdly,the classical feature extraction algorithms is performed to extract conventional features of the image,and then the support vector including the high-dimensional features and the conventional features is constructed,which is trained by SVM.Experiments show that the accuracy of the proposed method is 61.36%(the accuracy of using Yolo algorithm only is 44.08%)for a specific sample set,whose number of samples is 1/40 of the total samples,which greatly improves the accuracy of recognition under a small number of samples and has important application value.
作者 秦俊举 曹选平 夏校朋 QIN Junju;CAO Xuanping;XIA Xiaopeng(College of Mechanical Engineering,Chengdu Textile College,Chengdu 611731,China;Key Laboratory of Electronic Information Control,Chengdu 610036,China)
出处 《智能计算机与应用》 2020年第9期208-213,共6页 Intelligent Computer and Applications
关键词 样本倍增 SVM 深度神经网络 sample multiplication SVM deep neural network
  • 相关文献

参考文献3

二级参考文献16

  • 1王双成,苑森淼,王辉.基于类约束的贝叶斯网络分类器学习[J].小型微型计算机系统,2004,25(6):968-971. 被引量:30
  • 2史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 3王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:59
  • 4Friedman N. The Bayesian structural EM algorithm[C]// Fourteenth Annual Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 1998: 125-133.
  • 5Sehgal M S, Gondal I, Dooley L S. Collateral missing value imputation: A new robust missing value estimation algorithm for microarray data[J]. Bioinformatics, 2005, 21(10): 2417-2423.
  • 6Oba S, Sato M, Takemasa I, et al. A Bayesian missing value estimation method for gene expression profile data[J]. Bioinformatics, 2003, 19(16): 2088 2096.
  • 7Altendorf E, Restificar A C, Dietterich T G. Learning from sparse data by exploiting monotonicity constraints[C]// Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005: 18-26.
  • 8Feelders A. A new parameter learning method for Bayesian networks with qualitative influences[C]//The Twenty- Third Conference on Uncertainty in Artificial Intelligence. Corvallis, Oregon: AUAI Press, 2007:117 124.
  • 9Campos de C P, Cozman F G. Belief updating and learning in semi-qualitative probabilistic networksICl//Proceedi ngs of the 21st Conference in Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005: 153- 160.
  • 10Campos de C P, Ji Q. Improving Bayesian network parameter learning using constraints[C]//The 19th International Conference on Pattern Recognition. Florida, USA: IEEE, 2008: 113-120.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部