期刊文献+

基于弹状流和搅拌流的气力提升泵建模 被引量:3

Model for airlift pumps based on slug-churn flow
下载PDF
导出
摘要 针对传统的理论模型适应范围较窄、精度不高的问题,提出基于弹状流和搅拌流的气力提升泵理论建模。针对弹状流和搅拌流工况,分别建立提升泵气液速度模型、相含率模型以及压降模型,采用临界气含率判别气力提升泵流动工况,结合气液连续性方程和动量方程,建立了气力提升泵的完整理论模型。研究结果表明:该模型能较好地适应提升泵内弹状流与搅拌流工况,在弹状流-搅拌流过渡区域出现较大的误差,最大误差为11%;与传统理论模型相比,基于弹状流和搅拌流的理论模型适应范围广,预测精度高。 A new theoretical model for airlift pumps based on slug and churn flow was proposed due to the problems of narrow application range and low accuracy of traditional theoretical models.Firstly,the phase velocities,the void fraction,and the pressure gradient for slug flow and churn flow were deduced,respectively.A critical void fraction was employed for judging the flow regime in airlift pumps.Then,a closed model for airlift pumps was developed based on the gas-liquid continuity and momentum equations.The results show that the new model can adapt to the slug flow and churn flow in airlift pumps and has a maximal error of 11%in the slug-churn transition flow.Compared with the traditional models,the new model has a wide range of gas flow rate and high prediction accuracy.
作者 汪志能 王晓川 WANG Zhi-neng;WANG Xiao-chuan(School of Mechanical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China)
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2021年第1期42-50,共9页 Journal of Chemical Engineering of Chinese Universities
基金 湖南科技大学博士科研启动基金(E52055) 湖南省自然科学基金(2020JJ5184) 国家重点研发计划(2018YFC0808401)。
关键词 气力提升泵 理论建模 流型 压降 工作性能 airlift pump theoretical modeling flow regime pressure drop pump performance
  • 相关文献

参考文献5

二级参考文献33

  • 1Gunther A, Khan S A, Thalmarm M, et al. Transport and reaction in microscale segmented gas-liquid flow [J]. Lab Chip, 2004, 4(4): 278-286.
  • 2Yun J X, Zhang S H, Shen S C, et al. Continuous production of solid lipid nanoparticles by liquid flow-focusing and gas displacing method in microchanncls [J]. Chem Eng Sei, 2009, 64(19): 4115-4122.
  • 3Yun J, Lei Q, Zhang S, et al. Slug flow characteristics of gas-miscible liquids in a rectangular microchannel with cross and T-shaped junctions [J]. Chem Eng Sci, 2010, 65(18): 5256-5263.
  • 4Wongwises S, Pipathattakul M. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel [J]. Exp Therm Fluid Sei, 2006, 30(4): 345-354.
  • 5Triplett K A, Ghiaasiaan S M, Abdel-Khalik S I, et al. Gas-liquid two-phase flow in microchannels part I: Two-phase flow patterns [J]. Int J Multiphase Flow, 1999, 25(3): 377-394.
  • 6Chung P M, Kawaji M. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels [J]. Int J Multiphase Flow, 2004, 30(7-8): 735-761.
  • 7Zhao T S, Bi Q C. Co-current air-water two-phase flow patterns in vertical triangular microchannels [J]. lnt J Multiphase Flow, 2001, 27(5): 765-782.
  • 8Waelchli S, Rohr P R V. Two-phase flow characteristics in gas-liquid microreactors [J]. Int J Multiphase Flow, 2006, 32(7):791-806.
  • 9Pohorecki R, Sobieszuk P, Kula K, et al. Hydrodynamic regimes of gas-liquid flow in a microreactor channel [J]. Chem Eng J, 2008, 135(Supplement 1 ): S 185-S 190.
  • 10Akbar M K, Plummer D A, Ghiaasiaan S M. On gas-liquid two-phase flow regimes in microchannels [J]. Int J Multiphase Flow, 2003, 29(5): 855-865.

共引文献27

同被引文献18

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部