期刊文献+

时间上下文优化的协同过滤图书推荐 被引量:12

Research on a Collaborative Filtering Algorithm of Time Context Optimization for Book Recommendation
下载PDF
导出
摘要 针对高校图书馆场景存在的无显式反馈、借阅数据稀疏和传统推荐算法效果不好问题,提出基于时间上下文优化协同过滤的推荐算法,包含读者阅读行为评分、时间上下文和内容兴趣变迁3个要素。在数据准备阶段,通过制定评分转化规则、设计标准化函数来构建一种基于用户行为操作的兴趣评分模型,以解决用户评分缺失问题;在推荐召回阶段,提出一种非线性的时间衰减模型来对评价矩阵进行优化,以提高推荐效果;在推荐排序阶段,提出一种兴趣捕捉模型对召回结果按照图书类别进行精排序,以缓解数据稀疏问题并进一步提高推荐效果。实验结果表明,文章提出的优化算法在Top5的F值较未经优化的协同过滤提升增幅达141%。 University libraries have been facing such problems as little explicit feedback,decreasing borrowing data and poor performance of traditional recommendation algorithms.Thus,a recommendation algorithm for collaborative filtering optimization based on time context is proposed here.It consists of three elements,i.e.,reading behavioral score,time context,and content interest.In the stage of data preparation,in view of the lack of user ratings,an interest rating model(IRM)based on user behavior operations is constructed,so that scoring conversion rules are formulated,and the normalization function could be realized.In the stage of recommendation recall,in order to improve the performance of collaborative filtering recall results,a nonlinear time decay model(TDM)is used to optimize the evaluation matrix.In the stage of recommendation ranking,in order to alleviate the data sparse problem and further improve the recommendation performance,an interest capture model(ICM)is proposed to rank the recall results according to book categories.The final result shows that compared to traditional collaborative filtering,the proposed optimization algorithm could lead to a 141%increase in the F-Measure of Top5 recommendation.
作者 梁思怡 彭星亮 秦斌 林伟明 胡振宁 LIANG Siyi;PENG Xingliang;QIN Bin;LIN Weiming;HU Zhenning
出处 《图书馆论坛》 CSSCI 北大核心 2021年第3期113-121,共9页 Library Tribune
基金 2018年广东省普通高校特色创新科研项目“基于高水平学科建设用户画像的学术知识精准服务研究”(项目编号:2018WTSCX126)研究成果。
关键词 协同过滤 图书推荐 评价矩阵 算法优化 collaborative filtering book recommendation evaluation matrix algorithm optimization
  • 相关文献

参考文献10

二级参考文献92

  • 1张富国.基于协同过滤技术的电子商务推荐系统初探[J].科技广场,2006(8):7-9. 被引量:2
  • 2Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
  • 3Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991. [doi: 10.1145/1458082.1458205].
  • 4Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].
  • 5Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602. [doi: 10.1145/2396761.2398701].
  • 6Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405. [doi: 10.1145/1557019. 1557067].
  • 7Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 8Zhou TC, Ma H, King I, Lyu MR. UserRec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence. AAAI Press, 2010. 1486-1491.
  • 9Wu L, Chen EH, Liu Q, Xu LL, Bao TF, Zhang L. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 1854-1858. [doi: 10.1145/ 2396761.2398531].
  • 10Liu Q, Chen EH, Xiong H, Ding CHQ, Chen J. Enhancing collaborative filtering by user interests expansion via personalized ranking. IEEE Trans, on Systems, Man and Cybernetics—B, 2012,42(1):218-233. [doi: 10.1109/TSMCB.2011.2163711].

共引文献280

同被引文献150

引证文献12

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部