期刊文献+

基于位置感知能力胶囊网络的实体关系提取 被引量:1

Relation Extraction Based on CapsuleNet via Position Perception
下载PDF
导出
摘要 目前实体关系提取大都使用卷积神经网络(CNN)和循环神经网络(RNN)。但CNN和RNN均以标量形式进行特征表达,对位置信息的敏感度不够理想。同时,CNN和RNN的最大池化(max-pooling)导致特征信息丢失。针对这两个问题,引入胶囊网络(CapsuleNet),构建了具备位置感知能力的Position Perception CapsuleNet(PPCNet)。胶囊(Capsule)是一组神经元,特征表达基于向量形式。PPCNet将词间的位置关系转化为位置向量(position embedding)融入Capsule以获得位置感知能力。此外,PPCNet使用动态路由(Dynamic routing)替代池化,以减少特征损失,在SemEval-2010task8数据集上得到82.84%的F1值。 Most of the current relation extraction methods apply Convolutional Neural Network(CNN)and Recurrent Neural Network(RNN)methods.However,CNN and RNN both express their features in scalar form,which leads to their poor sensitivity to location information.Besides,the maximum pooling of CNN and RNN results in the loss of feature information.Aiming at these two problems,Position Perception CapsuleNet(PPCNet)has been structured.Capsule is a group of neurons whose feature expression is based on vector form.PPCNet transforms the position relation ship between words into position embedding and integrates it into capsule to obtain position perception ability.Furthermore,PPCNet uses dynamic routing instead of pooling to reduce feature loss and gets 82.84%F1 value on SemEval-2010task8 dataset.
作者 刘博闻 范春晓 LIU Bowen;FAN Chunxiao(School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第6期101-107,共7页 Computer Engineering and Applications
关键词 自然语言处理 实体关系提取 胶囊网络(CapsuleNet) 位置感知能力 PPCNet Natural Language Processing(NLP) relation extraction CapsuleNet position perception Position Perception CapsuleNet(PPCNet)
  • 相关文献

参考文献2

二级参考文献25

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 3Kambhatla N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations [C]//Proc of the ACL 2004 on Interactive Poster and Demonstration Sessions. Stroudsburg, PA: Association for Computational Linguistics, 2004:1-4.
  • 4Zhou G D, Su J, Zhang J, et al. Exploring various knowledge in relation extraction [C]//Proc of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA.. Association for Computational Linguistics, 2005:427-434.
  • 5Jiang J, Zhai C X. A systematic exploration of the feature space for relation extraction [C]//Proc of Human Language Technologies: The Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT'07). Stroudsburg, PA: Association for Computational Linguistics, 2007:113-120.
  • 6Chan Y S, Roth D. Exploiting background knowledge for relation extraction [C]//Proc of the 23rd Int Conf on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2010:152-160.
  • 7Sun A, Grishman R, Sekine S. Semi-supervised relation extraction with large-scale word clustering [C]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2011, 1: 521-529.
  • 8Chen Z, Ji H. Language specific issue and feature exploration in Chinese event extraction [C] //Proc of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers. Stroudsburg, PA~ Association for Computational Linguistics, 2009: 209- 212.
  • 9Li P F, Zhu Q M, Zhou G D. Using compositional semantics and discourse consistency to improve Chinese trigger identification [J]. Information Processing & Management, 2014, 50(2): 399-415.
  • 10Harrington P. Machine Learning in Action [M]. Greenwich, CT: Manning, 2012.

共引文献132

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部