期刊文献+

基于卷积神经网络的甲状腺影像诊断研究

Research on Thyroid Imaging Diagnosis Based on Convolution Neural Network
下载PDF
导出
摘要 随着卷积神经网络在医疗图像领域的成功应用,进一步推动了医学影像设备性能的提升。通过利用卷积神经网络方法,对甲状腺影像进行系统的分析,有效预测患者的病情发展态势,切实保障诊断效率的提高,整体看具有较为显著的临床应用价值。鉴于此,该文通过分析卷积神经网络的基本结构、工作机制、基本特点,探讨基于卷积神经网络的甲状腺影像识别方法,并为甲状腺影像诊断提出几点思考,以期有效推动卷积神经网络在甲状腺影像诊断中的应用改革进程。 With the successful application of convolutional neural network in the field of medical imaging,the performance of medical imaging equipment is further improved.Through the use of convolution neural network method,systematic analysis of thyroid imaging can effectively predict the development trend of the patient's condition and effectively ensure the improvement of diagnosis efficiency,which has a more significant clinical application value.In view of this,this paper analyzes the basic structure,working mechanism and basic characteristics of convolutional neural network,discusses the thyroid image recognition method based on convolutional neural network,and puts forward some thoughts for thyroid imaging diagnosis in order to effectively promote the application and reform process of convolutional neural network in thyroid imaging diagnosis.
作者 李立 董现玲 刘会玲 LI Li;DONG Xianling;LIU Huiling(Chengde Medical College,Chengde,Hebei Province,067000 China;Affiliated Hospital of Chengde Medical College,Chengde,Hebei Province,067000 China)
出处 《科技资讯》 2021年第2期1-3,共3页 Science & Technology Information
基金 河北省教育厅2019年河北省高等学校科学研究计划项目《基于超声图像的卷积神经网络对甲状腺疾病的识别研究》(项目编号:QN2019055)。
关键词 甲状腺疾病 医学影像 卷积神经网络 神经网络模型 Thyroid disease Medical imaging Convolutional neural network Neural network model
  • 相关文献

参考文献6

二级参考文献34

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部