期刊文献+

关于两个图的一类新连接图的谱

On the spectrum of a new join of two graphs
下载PDF
导出
摘要 给定2个图G_(1)和G_(2),设G_(1)的边集E(G_(1))={e_(1),e_(2),…,e_(m1)},则图G_(1)⊙G_(2)可由一个G_(1),m_(1)个G_(2)通过在G_(1)对应的每条边外加一个孤立点,新增加的点记为U={u_(1),u_(2),…,u_(m1)},将u_(i)分别与第i个G_(2)的所有点以及G_(1)中的边e_(i)的端点相连得到,其中i=1,2,…,m_(1)。得到:(i)当G_(1)是正则图,G_(2)是正则图或完全二部图时,确定了G_(1)⊙G_(2)的邻接谱(A-谱)。(ii)当G_(1)是正则图,G_(2)是任意图时,给出了G_(1)⊙G_(2)的拉普拉斯谱(L-谱)。(iii)当G_(1)和G_(2)都是正则图时,给出了G_(1)⊙G_(2)的无符号拉普拉斯谱(Q-谱)。作为以上结论的应用,构建了无限多对A-同谱图、L-同谱图和Q-同谱图;同时当G_(1)是正则图时,确定了G_(1)⊙G_(2)支撑树的数量和Kirchhoff指数。 Given graphs G_(1)and G_(2),let E(G_(1))={e_(1),e_(2),…,e_(m1)}be the edge set of G_(1),the graph G_(1)⊙G_(2)can be obtained from one copy of G_(1)and m1 copies of G_(2)by adding a new vertex corresponding to each edge of G_(1),letting the resulting new vertex set be U={u_(1),u_(2),…,u_(m1)},and joining uiwith each vertex of i-th copy of G_(2)and with the endpoints of ei,for i=1,2,…,m1.We can determine:(i)the adjacency spectrum of G_(1)⊙G_(2)for G_(1),G_(2)are both regular graphs,or G_(1)is regular graph,but G_(2)is a complete bipartite graph;(ii)the Laplacian spectrum of G_(1)⊙G_(2)when G_(1)is a regular graph and G_(2)is an arbitrary graph;(iii)the signless Laplacian spectrum of G_(1)⊙G_(2)for both G_(1)and G_(2)are regular graphs.As applications,we construct infinitely many pairs of A-cospectral graphs,L-cospectral graphs and Q-cospectral graphs.and determine the number of spanning trees and the Kirchhoff index of G_(1)⊙G_(2),where G_(1)is a regular graph.
作者 刘剑萍 吴先章 陈锦松 LIU Jianping;WU Xianzhang;CHEN Jinsong(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第2期180-188,195,共10页 Journal of Zhejiang University(Science Edition)
基金 The Project Supported by NSFC(11771362) the Natural Science Foundation of Fujian Province(2019J01643,2019J01645)。
关键词 同谱图 支撑树 基尔霍夫(Kirchhoff)指数 spectrum cospectral graphs spanning trees Kirchhoff index
  • 相关文献

参考文献1

二级参考文献8

  • 1Berman, A., Zhang, X.D. On the spectral radius of graphs with cut vertices. J. Combin. Theory Ser. B, 83:233-240 (2001).
  • 2Bondy, J.A., Murty, U.S.R. Graph Theory with Applications. The Macmillan Press LTD, 1976.
  • 3Bruadli, R.A., Solheid, E.S. On the spectral radius of complementary acyclic matrices of zeros and ones. SIAM J. Algebra Discrete Methods, 7:265-272 (1986).
  • 4Cvetkovie, D., Rowlinson, P., Simie, S. Eigenspaces of graphs. Cambridge University Press, Cambridge, 1997.
  • 5Guo, S.G. First six unicyclic graphs of order n with larger spectral radius. Appl. Math. J. Chinese Univ. Ser. A, 18(4): 480-486 (2003).
  • 6Li, Q., Feng, K.Q. On the largest eigenvalue of a graph. Acta Math. Appl. Sinica, 2:167-175 (1979).
  • 7Liu, H.Q., Lu, M., Tian, F. On the spectral radius of graphs with cut edges. Linear Algebra Appl., 389: 139-145 (2004).
  • 8Wu, B.F., Xiao, E.L., Hong, Y. The spectral radius of trees on k pendent vertices. Linear Algebra Appl., 395:343-349 (2005).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部