摘要
利用平面动力系统方法的分支理论,研究了Boussinesq方程,通过对Boussinesq方程进行行波变换,得到了相应行波系统的首次积分和平衡点,给出了不同参数条件下的相图,证实了Boussinesq方程存在孤立波解和周期波解。
By using the bifurcation theory of plane dynamic systems method,the Boussinesq equation is studied.By making traveling transformation to the Boussinesq equation,we obtain the first integral and equilibrium points of the corresponding traveling wave system.We draw the phase portraits under different parametric conditions.The existences of solitary wave solutions and periodic wave solutions for Boussinesq equation are revealed.
作者
徐园芬
章丽娜
XU Yuanfen;ZHANG Lina(Junior College,Zhejiang Wanli University,Ningbo 315100,Zhejiang Province,China;College of Science,Huzhou University,Huzhou 313000,Zhejiang Province,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2021年第2期196-199,共4页
Journal of Zhejiang University(Science Edition)
基金
浙江省自然科学基金资助项目(LY19A020001)。