期刊文献+

Boussinesq方程行波解的存在性

Existence of traveling wave solutions for the Boussinesq equation
下载PDF
导出
摘要 利用平面动力系统方法的分支理论,研究了Boussinesq方程,通过对Boussinesq方程进行行波变换,得到了相应行波系统的首次积分和平衡点,给出了不同参数条件下的相图,证实了Boussinesq方程存在孤立波解和周期波解。 By using the bifurcation theory of plane dynamic systems method,the Boussinesq equation is studied.By making traveling transformation to the Boussinesq equation,we obtain the first integral and equilibrium points of the corresponding traveling wave system.We draw the phase portraits under different parametric conditions.The existences of solitary wave solutions and periodic wave solutions for Boussinesq equation are revealed.
作者 徐园芬 章丽娜 XU Yuanfen;ZHANG Lina(Junior College,Zhejiang Wanli University,Ningbo 315100,Zhejiang Province,China;College of Science,Huzhou University,Huzhou 313000,Zhejiang Province,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第2期196-199,共4页 Journal of Zhejiang University(Science Edition)
基金 浙江省自然科学基金资助项目(LY19A020001)。
关键词 动力系统方法 孤立波解 周期波解 BOUSSINESQ方程 dynamical systems method solitary wave solution periodic wave solution Boussinesq equation
  • 相关文献

参考文献1

二级参考文献31

  • 1Lie S. Vorlesungen fiber Differentialgleichungen mit Bekannten Infinitesimalen Transformafionen. Leipzig: Teuber, 1891 (Reprinted by New York: Chelsea, 1967).
  • 2Olver P J. Applications of Lie Group to Differential Equations. 2nd ed. Graduate Texts of Mathematics, Vol. 107. New York: Springer, 1993.
  • 3Bluman G W, Cole J D. Similarity Methods for Differential Equations, Appfied Mathematical Sciences, Vol. 13. Berlin: Springer, 1974.
  • 4Bluman G W, Kumei S. Symmetries and Differential Equations, Applied Mathematical Sciences, Vol. 81. Berlin: Springer, 1989.
  • 5Cole J D. Perturbation Methods in Applied Mathematics. Waltham Massachusetts: Blaisdell, 1968.
  • 6Van Dyke M. Perturbation Methods in Fluid Mechanics. Stanford: Parabolic Press, 1975.
  • 7Nayfeh A H. Perturbation Methods. New York: John Wiley and Sons, 2000.
  • 8Baikov V A, Gazizov R K, Ibragimov N H. Approximate symmetries of equations with a small parameter. Mat Sb, 1988, 136: 435- 450.
  • 9Baikov V A, Gazizov R K, Ibragimov N H. Approximate symmetries of equations with a small parameter. English translation Math USSR Sb, 1989, 64: 427-441.
  • 10Baikov V A, Gazizov R K, Ibragimov N H. Approximate transformation groups and deformations of symmetry Lie algebras. In: Ibragimov N H, ed. CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 3, Boca Raton, Chapter 2. Florida: CRC Press, 1996.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部