期刊文献+

B_(4)C含量对ZrB_(2)陶瓷微观结构及力学性能的影响 被引量:1

Effects of B_(4)C content on the microstructure and mechanical properties of ZrB_(2) ceramics
下载PDF
导出
摘要 针对ZrB_(2)陶瓷粉末在球磨时易掺入ZrO2,影响ZrB_(2)陶瓷烧结致密化的问题,添加B_(4)C作为烧结助剂,采用无压烧结法制备ZrB_(2)陶瓷材料,研究B_(4)C含量(w(B_(4)C),下同)对材料微观形貌、硬度与抗弯强度的影响。结果表明,B_(4)C通过与晶粒表面的ZrO2发生反应,抑制ZrB_(2)晶粒粗化,减小晶粒尺寸,从而提高烧结致密度。随B_(4)C含量增加,ZrB_(2)陶瓷的晶粒尺寸和相对密度逐渐增大,抗弯强度和硬度先升高后降低。当w(B_(4)C)为7%时,ZrB_(2)晶粒细小,材料的抗弯强度和硬度(HV)达到最大,分别为242 MPa和12.65 GPa。w(B_(4)C)增加至9%时,出现晶粒异常长大,材料力学性能下降。 Aiming at the problem that ZrB_(2) ceramics powder were easily mixed with ZrO2 during ball milling,which affected the sintering denstification of ZrB_(2) ceramics,B_(4)C was introduced as sintering additive,and ZrB_(2) ceramics were prepared by pressureless sintering.The effects of B_(4)C content on the microstructure and mechanical properties of the materials were investigated.The results show that B_(4)C can inhibit grain coarsening and reduce grain size by reacting with ZrO2 on the grain surface.With the increase of B_(4)C content,the grain size and relative density of the ZrB_(2) ceramics increase gradually,while the flexural strength and hardness first increase and then decrease.When the mass fraction of B_(4)C is 7%,the grain size of ZrB_(2) are fine,and the flexural strength and hardness of the material reach the maximum value,which are 242 MPa and 12.65 GPa respectively.As increasing the content of B_(4)C to 9%,the grains grow abnormally and the mechanical properties decrease.
作者 杜玉辉 汤振霄 彭可 周远明 易茂中 DU Yuhui;TANG Zhenxiao;PENG Ke;ZHOU Yuanming;YI Maozhong(State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China)
出处 《粉末冶金材料科学与工程》 EI 2021年第1期77-83,共7页 Materials Science and Engineering of Powder Metallurgy
基金 装备预研相关基础研究项目(4142202XXXX) 湖南省自然科学基金资助项目(2017JJ2320)。
关键词 ZrB_(2)陶瓷 B_(4)C含量 无压烧结 微观结构 抗弯强度 ZrB_(2)ceramics B_(4)C content pressureless sintering microstructure flexural strength
  • 相关文献

参考文献2

二级参考文献68

  • 1Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007, 90(5): 1347-1364.
  • 2Thevenot E Boron carbide--a comprehensive review. J. Eur. Ceram. Soc., 1990, 6(4): 205-225.
  • 3Eichler J, Lesniak C. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc., 2008, 28(5): 1105-1109.
  • 4Becher P F. Microstructural design of toughened ceramics. J. Am. Ceram. Soc., 1991,74(2): 255-269.
  • 5Padture N P. In situ-toughened silicon-carbide. J. Am. Ceram. Sot., 1994, 77(2): 519-523.
  • 6Yang F Y, Zhang X H, Han J C, et al. Preparation and properties of ZrBz-SiC ceramic composites reinforced by carbon nanotubes. J. lnorg. Mater., 2008, 23(5): 950-954.
  • 7Zhu T, Xu L, Zhang X H, et al. Densification, microstructure and mechanical properties of ZrB2-SiCw ceramic composites. J. Eur.Ceram. Soc., 2009, 29(13): 2893-2901.
  • 8Zhang G J, Deng Z Y, Kondo N, et al. Reactive hot pressing of ZrB2-SiC composites. J. Am. Ceram. Soc., 2000, 83(9): 2330-2332.
  • 9Zhang X H, Li W J, Hong C Q, et al. Microstructure and mechani- cal properties of hot pressed ZrB2-SiCp-ZrO2 composites. Mater. Lett., 2008, 62(15): 2404-2406.
  • 10Wu H T, Zhang W G. Fabrication and properties of ZrB2-SiC-BN machinable ceramics. J. Eur. Ceram. Soc., 2010, 30(4): 1035-1042.

共引文献26

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部