期刊文献+

纳米级Li_(4)Ti_(5)O_(12)负极材料的制备及其输运特性 被引量:5

Preparation and transport property of nano-Li_(4)Ti_(5)O_(12) anode materials
下载PDF
导出
摘要 以酞酸丁酯和乙酸锂为前驱体,通过溶胶凝胶法成功制备了纳米钛酸锂Li_4Ti_5O_(12)(LTO)负极材料。采用X射线衍射分析、扫描电镜(SEM)和透射电镜(TEM)分别对材料的物相与形貌进行了表征分析,并研究了煅烧条件和包覆改性对LTO输运特性的影响。研究表明,煅烧温度为800℃,时间为10 h条件下制备的样品的输运特性最佳,离子电导率为8.8×10^(-8) S/cm,电子电导率为8.53×10^(-10) S/cm。均匀的碳包覆层可以有效地改善样品的输运特性,LTO/C复合活性材料的离子与电子电导率分别达到4.35×10^(-7) S/cm和9.63×10^(-8) S/cm。电化学性能测试表明,碳包覆后的活性材料在0.1 C倍率下首次放电容量可达172.4 mAh/g;在5 C高倍率下循环充放电50次后,容量保持率可达94.4%,表现出较好的电化学性能。 Li_4Ti_5O_(12)(LTO)anode materials are successfully prepared by sol-gel method using butyl phthalate and lithium acetate as precursors.The phase and morphology of the material were characterized by X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The effects of calcination conditions and coating modification on transport properties of LTO were also studied.The results show that the ionic conductivity and electronic conductivity of the sample prepared at 800℃and 10 h are 8.8×10^(-8) S/cm and 8.53×10^(-10) S/cm,respectively.The ionic and electronic conductivities of LTO/C are 4.35×10^(-7) S/cm and 9.63×10^(-8) S/cm,respectively.The electrochemical performance tests show that the first discharge capacity of carbon-coated active materials can reach 172.4 mAh/g at the ratio of 0.1 C.After 50 cycles at 5 C,the capacity retention rate can reach 94.4%,indicating a good electrochemical performance of the samples.
作者 廉恬柔 卢玉晓 吴冰 石光跃 马蕾 刘磊 娄建忠 LIAN Tian-rou;LU Yu-xiao;WU Bing;SHI Guang-yue;MA Lei;LIU Lei;LOU Jian-zhong(Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province,College of Electronic Information Engineering,Hebei University,Baoding 071002,Hebei?China)
出处 《材料工程》 EI CAS CSCD 北大核心 2021年第3期59-66,共8页 Journal of Materials Engineering
基金 天津市重点研究开发项目(19YFHBQY00030) 河北省自然科学基金(F2017201130)。
关键词 溶胶凝胶法 负极材料 钛酸锂 电导率 sol-gel method anode material lithium titanate conductivity
  • 相关文献

参考文献8

二级参考文献123

  • 1高剑,姜长印,应皆荣,万春荣.锂离子电池负极材料钛酸锂的研究进展[J].电池,2005,35(5):390-392. 被引量:29
  • 2Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithiumion batteries. J. Power Sources, 1999, 81182: 352-357.
  • 3Zhao H, Li Y, Zhu Z, et al. Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries. Electrochim. Acta, 2008, 53(24): 7079-7083.
  • 4Martin P, Lopez M L, Pico C, et al. Li(4-x)/3Ti(5-2x)/3CrxO4 (0 <_x < 0.9) spinels: new negatives for lithium batteries. Solid State Sci., 2007, 9(6): 521-526.
  • 5Robertson A D, Tukamoto H, lrvine J T S. Li1+xFe1-3xTi1+2xO4 (0.0<x<50.33) based spinals: possible negative electrode materials for future Li-ion batteries. J. Electrochem. Soc., 1999, 146(11): 3958-3962.
  • 6Hao Y J, Lai Q Y, Lu J Z, et al. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials, lonics, 2007, 13(5): 369-373.
  • 7Huang S, Wen Z, Zhu X, et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J. Power Sources, 2007, 165(1): 408-412.
  • 8Li X, Qu M, Yu Z. Structural and electrochemical performances of Li4Ti5-xZrxO 12 as anode material for lithium-ion batteries. J. Alloys Compd., 2009, 487(1/2): L12-L17.
  • 9Zhong Z. Synthesis of Mo^4+ substituted spinel Li4Ti5-xMOxO12. Electrochem. Solid-State Lett., 2007, 10(12): A267-A269.
  • 10Yi T F, Shu J, Zhu Y R, et al. High-performance Li4Ti5-xVxO12 (0 < x < 0.3) as an anode material for secondary lithium-ion battery. Electrochim. Acta, 2009, 54(28): 7464-7470.

共引文献41

同被引文献29

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部