期刊文献+

基于神经网络的红绿灯识别研究 被引量:2

Traffic light judgment design based on Neural Network
下载PDF
导出
摘要 交通灯的识别对人工智能以及无人驾驶都有着举足轻重的作用,本文研究交通识别中的红绿灯判断,用于改善驾驶员疲劳以及维护交通秩序从而提高驾驶安全系数减少交通事故的发生。通过机器视觉采集红绿灯交通信号图,运用M atlab进行图片处理截取红绿灯区域,提取每张图片的121个像素点RGB值,运用1和2分别表示绿灯和红灯,建立红绿灯样本训练库,通过Matlab自带的数据拟合工具nftool进行神经网络训练,调整训练、验证、测试数据比例,最终得到识别效果较好的神经网络算法。运用样本均值进行测试也能够得到较好的识别。 The identification of traffic lights plays a decisive role in both artificial intelligence and unmanned driving.This paper studies the judgment of traffic lights in traffic identification,which can be used to improve driver fatigue and maintain traffic order so as to improve the driving safety coefficient and reduce the occurrence of traffic accidents.By machine vision gathering traffic signal of traffic light,using Matlab image processing to crop traffic area,in each image RGB values of 121 pixels are extracted,1 and 2 are used to represent the traffic lights respectively,and red and green traffic light sample training library in built,through the Matlab’s own data fitting tool nftool neural network training is conducted,the ratio among training,validation,test data is adjusted,so the neural network algorithm with better identification effect is achieved.Using the sample mean for testing can also be well identified.
作者 詹玉 吴钦木 ZHAN Yu;WU Qinmu(The Electrical Engineering College,Guizhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2021年第1期32-35,共4页 Intelligent Computer and Applications
关键词 机器视觉 红绿灯识别 RGB值 数据拟合工具nftool 神经网络 machine vision traffic light identification RGB values nftool a data fitting tool the neural network
  • 相关文献

参考文献1

二级参考文献13

  • 1阮秋琦,阮宇智,译.冈萨雷斯数字图像处理[M].北京:电子工业出版社,2007.
  • 2OMACHI M, OMACHI S. Traffic light detection with color and edge information [ C ]//Proceedings of the sec- ond IEEE International Conference on Computer Science and Information Technology. Beijing, China: [ s. n. ,2009 : 284-287.
  • 3SHEN Y, OZGUNER U, REDMILL K, et al. A robust video based traffic light detection algorithm for intelligent vehicles[ C ]//Proceedings of IEEE Intelligent Vehicles Symposium. Xi'an, China: IEEE Press, 2009: 521-526.
  • 4DE CHARETTE R, NASHASHIBI F. Real time visual traffic lights recognition based on spot light detection and adaptive traffic lights templates [ C ]//Proceedings of IEEE Intelligent Vehicles Symposium. Xi'an, China: IEEE Press, 2009:358-363.
  • 5PARK J H, JEONG C. Real-time signal light detection [ C ]//Second International Conference on Future Genera- tion Communication and Networking Symposia. Sanya, China: [s. n. ], 2008:139-142.
  • 6LU K H, WANG C M, CHEN S Y. Traffic light recog- nition [J]. Journal of the Chinese Institute of Engineers, 2008, 31 (6) : 1069-1075.
  • 7YU C, BAI Y. A Traffic Light Detection Method[C]// International Conference on Teaching and Computational Science. Macao, China: [s. n. ], 2012:745-751.
  • 8ESTABLE S, SCHOCK J, STEIN F, et al. A real-time traffic sign recognition system[ C ]//Proceedings of the Intelligent Vehicles'94 Symposium. Pairs, France: s. n. J, 1994:213-218.
  • 9王鹏,郑光宇,宋开亮.一种新的基于图像识别技术的信号灯识别算法[J].兵工自动化,2009,28(3):73-75. 被引量:8
  • 10黄战华,姜永奎,张旺,张昊.基于视频图像的指示灯状态监测识别技术研究[J].传感技术学报,2010,23(4):543-547. 被引量:5

共引文献7

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部