期刊文献+

基于竞争侵略策略的粒子群算法

Particle Swarm Optimization based on competitive aggression Strategy
下载PDF
导出
摘要 针对粒子群优化算法(Particle Swarm Optimization,PSO)容易陷入局部最优及算法收敛速度慢的问题,提出基于竞争侵略策略的粒子群算法(Particle Swarm Optimization based on competitive aggression Strategy,CAPSO)。凭借高自由度的侵略性,自由粒子群中粒子与择优进化群中粒子进行比较,得出竞争最优,进而通过竞争池指导择优进化群更新,使CAPSO算法快速跳出局部最优,且提高算法收敛速度。使用8个标准测试函数分别对4个算法以及CAPSO算法进行仿真,对寻优结果进行分析。结果表明,CAPSO算法无论是在单峰函数问题还是多峰函数问题上,总体拥有优秀的寻优结果。 In order to solve the problem that particle swarm optimization(PSO) algorithm is easy to fall into local optimization and slow convergence speed,a particle swarm optimization algorithm based on competitive aggression strategy is proposed.By comparing aggressive free particles with high degrees of freedom with optimized particle swarm optimization particles,competitive optimization is obtained,and then particle swarm optimization update is guided by competitive pool,which makes CAPSO algorithm jump out of local optimization quickly.And improve the convergence speed of the algorithm.Eight standard function tests are used to simulate the four algorithms and the CAPSO algorithm,and the optimization results are analyzed.The results show that the CAPSO algorithm has excellent optimization results in both unimodal function problems and multi-peak function problems.
作者 安宁 张军 季伟东 AN Ning;ZHANG Jun;JI Weidong(Department of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025,China)
出处 《智能计算机与应用》 2020年第11期73-78,共6页 Intelligent Computer and Applications
基金 国家自然基金(31971015) 哈尔滨市科技局科技创新人才研究专项资助项目(2017RAQXJ050) 哈尔滨师范大学硕士研究生创新科研资助项目(HSDSSCX2019-08)。
关键词 群体智能 竞争侵略 优化算法 粒子群 swarm intelligence competitive aggression optimization algorithm particle swarm
  • 相关文献

参考文献8

二级参考文献47

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2刘丽珏,蔡自兴.带繁殖和退化的微粒群算法[J].计算机工程与应用,2006,42(26):36-37. 被引量:2
  • 3蒋龙聪,刘江平.模拟退火算法及其改进[J].工程地球物理学报,2007,4(2):135-140. 被引量:47
  • 4James Kennedy, Russell Eberhart. Particle Swarm Optimization/ [ C]. In: IEEE Int'l Conference on Neural Networks, Perth, Australia, 1995. 1942 - 1948.
  • 5James Kennedy, Russell Eberhart. A New Optimizer Using Particle Swarm Theory[C]. In: Proc of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.39-43
  • 6Y Shi, R Eberhart. A modified particle swarm optimizer[ C]. In: IEEE World Congress on Computational Intelligence. 1998.68 -73.
  • 7Y Shi, R Eberhart. Fuzzy Adaptive Particle Swarm Optimization [ C ]. In :Proc Congress on Evolutionary Computation, Seoul, Korea,2001.
  • 8C Eberhart, Y Shi. Comparing inertia weights and constriction factors in particle swarm optimization [ C ]. Proceedings of the 2000 International Congress on Evolutionary Computation (San Diego, Calfornia) ,IEEE Service Center, Piscataway, N J,2000.
  • 9Bo Wang, GuoQiang Liang, ChaLin Wang. A New Kind of Fuzzy Particle Swarm Optimization FUZZY PSO Algorithm[ C ]. ISSCAA 2006.1st International Symposium on Systems and Control in Aerospace and Astronautics, 2006.
  • 10Javad Sadri, Agenetic Binary Particle Swarm Optimization Model [ C]. 2006 IEEE Congress on Evolutionary Computation Vancouver, BC, Canada, 2006.1

共引文献483

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部