期刊文献+

基于改进变分自编码器的零样本图像分类 被引量:2

Zero-Shot Image Classification Based on Improved Variational Auto-encoder
下载PDF
导出
摘要 针对零样本图像分类过程中对于已知类别样本获得代价高、领域漂移等问题,提出了一种利用最大均值差异改进变分自编码器的零样本图像分类模型,首先用最大化均值差异分离样本噪声因素来得到更贴近未知类别的样本,接着利用生成的样本辅助学习将零样本分类问题转化为有监督学习分类问题,之后利用分类模型进行图像分类。相较于基于距离度量进行零样本图像分类的算法,提出的算法在CUB,AWA和ImageNet-2数据集上均得到良好的分类效果,改善领域漂移问题,分类精度得到提高,证明了算法模型的有效性和可行性。 In the process of zero-shot image classification,problems such as high acquisition cost for samples of known categories and domain drift were addressed.A zero-shot image classification model based on maximum mean difference was proposed to improve the variational auto-encoder.First,the noise factor of samples is separated by maximizing the mean difference to obtain samples closer to the unknown category.Then,the generated sample-assisted learning is used to transform the zero-shot classification problem into the supervised learning classification problem.Finally,the classification model is used for image classification.Compared with the zero-shot image classification algorithm based on distance measurement,the proposed algorithm achieved good classification effect on CUB,AWA,and ImageNet-2 data sets,and improved domain drift and classification accuracy,which proves the effectiveness and feasibility of the proposed algorithm model.
作者 曹真 谢红薇 CAO Zhen;XIE Hongwei(College of Software,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《太原理工大学学报》 CAS 北大核心 2021年第2期300-306,共7页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61702356) 山西省基础研究计划项目(201801D121143)。
关键词 零样本分类 变分自编码器 最大均值差异 领域漂移 噪声分离 zero-shot classification variational auto-encoder maximum mean discrepancy domain shift noise separation
  • 相关文献

参考文献2

二级参考文献36

  • 1Shao L, Zhu F, Li X. Transfer learning for visual categorization: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 26(5): 1019-1034.
  • 2Jia C, Kong Y, Ding Z, et al. Latent tensor transfer learning for RGB-D action recognition[C]//Proceedings of the ACM International Conference on Multimedia. New York, NJ, USA: ACM, 2014: 87-96.
  • 3Perlich C, Dalessandro B, Raeder T, et al. Machine learning for targeted display advertising: Transfer learning in action[J]. Machine Learning, 2014, 95(1): 103-127.
  • 4Zhuang F, Luo P, Xiong H, et al. Exploiting associations between word clusters and document classes for cross-domain text categorization[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2011, 4(1): 100-114.
  • 5Dai W, Xue G R, Yang Q, et al. Co-clustering based classification for out-of-domain documents[C]//Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NJ, USA: ACM, 2007: 210-219.
  • 6Zhou J T, Pan S J, Tsang I W, et al. Hybrid heterogeneous transfer learning through deep learning[C]//Twenty-Eighth AAAI Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2014: 2213-2219.
  • 7Yang P, Gao W. Multi-view discriminant transfer learning[C]//Proceedings of the Twenty-Third international joint conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2013: 1848-1854.
  • 8Zhang M L, Zhou Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837.
  • 9Mei S. Predicting plant protein subcellular multi-localization by Chou's PseAAC formulation based multi-label homolog knowledge transfer learning[J]. Journal of Theoretical Biology, 2012, 310: 80-87.
  • 10Tawiah C, Sheng V. Empirical comparison of multi-label classification algorithms[C]//Twenty-Seventh AAAI Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2013: 1645-1646.

共引文献75

同被引文献29

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部