期刊文献+

基于XGBoost的冷水机组不平衡数据故障诊断 被引量:9

FAULT DIAGNOSIS OF UNBALANCED DATA OF CHILLERS BASED ON XGBOOST
下载PDF
导出
摘要 冷水机组运行数据分布有不平衡、非高斯、非线性、含噪声的特点,这给基于数据的冷水机组故障诊断带来了挑战。针对这些特点,提出了一种将局部密度过采样算法(Minority Oversampling under Local Area Density,MOLAD)和极限梯度提升算法(e Xtreme Gradient Boosting,XGBoost)相结合的复合算法应用于冷水机组故障诊断中,以克服样本分布不平衡问题,引入代价敏感学习理论来提升重要故障的召回率。基于离心式冷水机组常见的七个故障监测数据进行仿真,结果表明:XGBoost相比于对照组能够更好的对冷水机组状态监测数据进行分类;MOLAD-XGBoost复合模型能够有效处理数据不平衡问题;代价敏感权重可以有效提高重要故障的召回率。 The chiller operating data has unbalanced,non-Gaussian,non-linear,noise-containing characteristics,which poses a challenge for data-based chiller fault diagnosis.Aiming at these characteristics,a chiller fault diagnosis method based on Minority Oversampling under Local Area Density and e Xtreme Gradient Boosting is proposed to chiller fault diagnosis to overcome sample distribution imbalance.Introduce cost-sensitive learning theory to increase the recall rate of important faults.The simulations of seven fault monitoring data commonly used in centrifugal chillers show that XGBoost can better classify chiller status monitoring data compared to the control group.The MOLAD-XGBoost composite model can effectively deal with data imbalance problems;Cost sensitive weights can effectively increase the recall rate for critical failures.
作者 潘进 丁强 江爱朋 陈越增 夏宇栋 PAN Jin;DING Qiang;JIANG AiPeng;CHEN YueZen;XIA YuDong(College of Automation,Hangzhou Dianzi University,Hangzhou 310018,China;Ningbo Hicon Industry Co.,Ltd.,Ningbo 315470,China)
出处 《机械强度》 CAS CSCD 北大核心 2021年第1期27-33,共7页 Journal of Mechanical Strength
基金 国家自然科学基金项目(61374142)资助。
关键词 故障诊断 冷水机组 极限梯度提升 不平衡数据 过采样 Fault diagnosis Chiller Extreme gradient boosting Unbalanced data Oversampling
  • 相关文献

参考文献6

二级参考文献97

  • 1FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 2李中领,金宁,朱岩.人工神经网络应用于空调系统故障诊断的研究[J].制冷与空调,2005,5(1):50-53. 被引量:11
  • 3刘相艳,谷波,黎远光.基于并行感知器的制冷系统故障诊断分析[J].上海交通大学学报,2005,39(8):1233-1239. 被引量:10
  • 4王伟,姚杨,马最良.基于BP神经网络的压缩机性能预测模型的建立[J].流体机械,2005,33(9):21-24. 被引量:26
  • 5Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12- 24.
  • 6Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2): 161- 174.
  • 7Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring[J]. J of Chemometrics, 2001, 15(9): 715-742.
  • 8Qin S J, Cherry G, Good R, et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework[J]. J of Process Control, 2006, 16(3): 179-191.
  • 9Zhang Y, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations[J]. J of Process Control, 2006, 16(8): 819-829.
  • 10Undey C, Tatara E, Cinar A. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods[J]. Engineering Applications of Artificial Intelligence, 2003, 16(5/6): 555- 566.

共引文献447

同被引文献131

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部