期刊文献+

两种典型PPCPs在潜流人工湿地中的季节性去除效果及降解产物 被引量:3

Seasonal Removal Efficiency and Degradation Products of Two Typical PPCPs in Subsurface Flow Constructed Wetlands
原文传递
导出
摘要 药物及个人护理品(PPCPs)在地表水中的污染问题已引起了广泛关注,人工湿地(constructed wetlands,CWs)在PPCPs去除中具有突出优势,然而关于不同类型PPCPs在CWs去除中的相互作用研究得还较少.本研究选取两种常用且相对分子质量接近的典型PPCPs——广谱抗菌剂三氯生(TCS)和非甾体抗炎药物双氯芬酸(DCF)作为目标污染物,分析其在潜流人工湿地中的去除行为,并探讨不同季节和不同进水条件(TCS、DCF单独投加和二者复合投加)对两种污染物去除效果的影响.人工湿地系统的主要参数如下:上行流式潜流人工湿地,水力负荷为0.20 m·d^(-1),水力停留时间为3 d,进水方式采用连续流进水.PPCPs初始进水浓度为TCS 80μg·L^(-1)和DCF 25μg·L^(-1).结果表明,TCS和DCF在夏季平均去除率(分别为91.72%和85.86%)均显著高于冬季(分别为52.88%和32.47%).独立样本t检验证实,不同进水条件(TCS、DCF两者单独投加和二者复合投加)下,TCS和DCF的去除效果无显著差异.同时,TCS和DCF的降解产物在不同进水系统中没有差异,其中TCS在不同系统中均未检测到代表性降解产物,DCF在不同系统中主要降解产物均为3,5-二氯苯甲酸和间二氯苯,两种典型PPCPs在微量(μg·L^(-1))层级上无显著拮抗、竞争等相互作用. The pollution of surface waters by pharmaceuticals and personal care products(PPCPs)has aroused widespread concern.Constructed wetlands(CWs)have outstanding advantages in the removal of PPCPs;however,few studies have focused on the interaction of different types of PPCPs in CWs.In this study,two typical PPCPs[broad-spectrum antimicrobial agents triclosan(TCS)and non-steroidal anti-inflammatory drug diclofenac(DCF)]were selected as target pollutants and their removal behavior in subsurface flow CWs was analyzed.The effects of different seasons and influent conditions(i.e.,single and combined addition of TCS and DCF)on removal efficiency was also examined.The main parameters of the CW system were as follows:the up-flow subsurface CW had a hydraulic load of 0.20 m·d^(-1)and a hydraulic residence time of 3 d with a continuous flow inlet.The initial influent concentration of PPCPs was 80 g·L^(-1)for TCS and 25 g·L^(-1)for DCF.The results showed that the average removal efficiencies for TCS and DCF in summer(91.72%and 85.86%,respectively)were significantly higher than in winter(52.88%and 32.47%,respectively).Independent sample t-tests confirmed that there was no significant difference in the removal efficiency of TCS and DCF under the different influent conditions(single and combined addition).The degradation products of TCS and DCF were also no different between the influent systems,and the representative degradation products of TCS were not detected in all systems.The main degradation products of DCF in the different systems were 3,5-dichlorobenzoic acid and m-dichlorobenzene.The two studied PPCPs showed no significant antagonism and competition effects at trace levels.
作者 李超予 杨怡潇 张宁 谢慧君 胡振 张建 LI Chao-yu;YANG Yi-xiao;ZHANG Ning;XIE Hui-jun;HU Zhen;ZHANG Jian(Environment Research Institute,Shandong University,Qingdao 266200,China;Guangzhou Metro Design&Research Institute Co.,Ltd.,Guangzhou 510010,China;School of Environmental Science and Engineering,Shandong University,Qingdao 266200,China)
出处 《环境科学》 EI CAS CSCD 北大核心 2021年第2期842-849,共8页 Environmental Science
基金 国家自然科学基金项目(51978385)。
关键词 人工湿地 药品及个人护理品(PPCPs) 三氯生(TCS) 双氯芬酸(DCF) 降解产物 constructed wetlands pharmaceuticals and personal care products(PPCPs) triclosan(TCS) diclofenac(DCF) degradation products
  • 相关文献

参考文献3

二级参考文献136

  • 1国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.258~285.
  • 2Reiss R, Mackay N, Habig C, et al. An ecological risk assessment for triclosan in lotic systems following dis- charge from wastewater treatment plants in the United States [J]. Environmental Toxicology and Chemistry, 2002, 21 (11): 2483 - 2492.
  • 3Schweizer H P. Triclosan: A widely used biocide and its link to antibiotics [J]. FEMS Microbiology Letters, 2001, 202(1): 1 - 7.
  • 4Singer H, MUller S, Tixier C, et al. Triclosan: Occurrence and fate of a widely used biocide in the aquatic envi- ronment: Field measurements in wastewater treatment plants, surface waters, and lake sediments [J]. Environ- mental Science & Technology, 2002, 36(23): 4998 - 5004.
  • 5Adolfsson-Erici M, Pettersson M, Parkkonen J, et al. Triclosan, a commonly used bactericide found in hu- man milk and in the aquatic environment in Sweden [J]. Chemosphere, 2002, 46(9-10): 1485 - 1489.
  • 6Foran C M, Bennett E R, Benson W I-I. Developmental evaluation of a potential non-steroidal estrogen: Tri- closan [J]. Marine Environmental Research, 2000, 50(1- 5): 153 - 156.
  • 7Matsumura N, Ishibashi H, Hirano M, et al. Effects of nonylphenol and triclosan on production of plasma vi- tellogenin and testosterone in male South African clawed frogs (Xenopus laevis) [J]. Biological and Phar- maceutical Bulletin, 2005, 28(9): 1748 - 1751.
  • 8Veldhoen N, Skirrow R C, OsachoffH, et al. The bacte- ricidal agent triclosan modulates thyroid hormone-as- sociated gene expression and disrupts postembryonic anuran development [J]. Aquatic Toxicology, 2006, 80 (3): 217 - 227.
  • 9Piccoli A, Fiori J, Andrisano V, et al. Determination of triclosan in personal health care products by liquid chromatography (HPLC) [J]. I1 Farmaco, 2002, 57(5): 369 - 372.
  • 10McAvoy D C, Schatowitz B, Jacob M, et al. Measure- ment of triclosan in wastewater treatment systems [J] Environmental Toxicology and Chemistry, 2002, 21 (7) 1323 - 1329.

共引文献34

同被引文献35

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部