期刊文献+

温度或盐度对水下量子密钥分配影响的研究

Study on the Effect of Temperature or Salinity on Underwater Quantum Key Distribution
下载PDF
导出
摘要 水下量子密钥分配对保障水下通信安全具有十分重要的意义。本文研究不同温度或盐度的海水对光传输以及水下量子密钥分配的影响。本文在有限的范围内改变水槽中水的温度或盐度,在温盐均匀和有温盐差的海水信道中对出射光进行偏振测试,并进行了基于偏振编码的BB84协议水下量子密钥分配实验研究。研究表明:偏振光经过温盐均匀或有温盐差的模拟海水后其偏振态几乎不发生变化;在温盐均匀的海水中,温度或盐度的变化几乎不改变误码率,但在温盐不均匀的海水中,误码率随温盐差的增大呈增加趋势。 Underwater quantum key distribution plays an important role in ensuring the security of underwater communication.In this paper,the effects of seawater with different temperatures or salinities on light transmission and underwater quantum key distribution were studied.We changed the temperature or salinity of the water in the tank within a limited range,measure the polarization of the received light in temperature or salt uniform channel and temperature or salt difference channel,and carred out the experiment of underwater quantum key distribution based on polarization encoding BB84 protocol.The results show that the polarization of light hardly changes after passing through simulated seawater with uniform temperature and salinity or with temperature and salinity difference.And the change of temperature or salinity in uniform seawater hardly influences the bit error rate.However,in seawater with nan-unirorm temperature and salinity,the bit error rate increases with the increase of temperature and salinity difference.
作者 沈园 赵士成 于永河 马晓平 肖芽 李文东 顾永建 SHEN Yuan;ZHAO Shi-Cheng;YU Yong-He;MA Xiao-Ping;XIAO Ya;LI Wen-Dong;GU Yong-Jian(College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China;School of Mathematics & Physics, Qingdao University of Science & Technology, Qingdao 266061, China)
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期122-126,共5页 Periodical of Ocean University of China
基金 国家自然科学基金项目(61575180,61701464,114751600) 中央高校基本科研业务费专项项目(201861012)资助。
关键词 量子密钥分配 海水信道 温度 盐度 偏振态 误码率 成码率 quantum key distribution seawater channel temperature salinity polarization bit error rate bit rate
  • 相关文献

参考文献1

二级参考文献18

  • 1李景镇.光学手册[M].西安:陕西科学技术出版社,2010.
  • 2Gisin N,Ribordy G,Tittel W,et al.Quantum cryptography[J].Rev Mod Phys,2002,74:145-195.
  • 3Bennett C H,Brassard G.Quantum cryptography:Public key distribution and coin tossing[C].New York:Proceedings of the IEEE International Conference on Computers,Systems and Signal Processing,IEEE,1984,1:175-179.
  • 4Bennett C H.Experimental quantum cryptography[J].Journal of Cryptolog,1992,5:3-28.
  • 5Lo H K,Chau H F.Unconditional security of quantum key distribution over arbitrarily long distances[J].Science,1999,283,2050-2056.
  • 6Shor P W,Preskill J.Simple proof of security of the BB84quantum key distribution protocol[J].Physical Review Letters,2000,85,441-444.
  • 7Gottesman D,Hoi-kwong,Lo Lülkenhus N,et al.Security of quantum key distribution with imperfect devices[J].Quantum Information and Computation,2004,4:325-360.
  • 8Tobias S M,Henning W,Martin F,et al.Harald,Experimental demonstration of free-space decoy-state quantum key distribution over 144km[J].Phys Rev Lett,2007,98:010504.
  • 9Lanzagorta M.Underwater Communications[M].California:Morgan&Claypool,2013.
  • 10Jaruwatanadilok S.Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory[J].IEEE,2008,26(9):1620-1627.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部