摘要
从DIKW概念链看,数据科学的理论基础源于统计学、机器学习以及知识论三大学术领域,形成算法-计算-知识核心"三位一体"的面向大数据知识发现的理论架构,同时,大数据架构Hadoop、算法语言Python以及深度学习框架Tensorflow为数据科学的研究开发提供了技术基础。这一理论与技术基础框架正支持着数据科学在信息科技与知识发现里开拓创新。
From the view of DIKW chain,the theoretical foundations of data science are statistics,machine learning,and epistemology,leading to the trinity of algorithm,computing,knowledge as the theoretical framework for knowledge discovery in big data age.In the same time,the big data architecture Hadoop,algorithm language Python,and deep learning framework Tensorflow provide technical foundations for the R&D activities of data science.The theoretical and technical foundations are supporting the creation and innovation of data science in the fields of information and knowledge studies.
作者
王宜鸿
叶鹰
Howell Y.Wang;Fred Y.Ye(School of Information Management,Nanjing University)
出处
《图书馆杂志》
CSSCI
北大核心
2020年第12期20-28,共9页
Library Journal
关键词
数据科学
信息科学
知识发现
理论基础
技术基础
Data science
Information science
Knowledge discovery
Theoretical foundation
Technical foundation