期刊文献+

WEAK SOLUTION TO THE INCOMPRESSIBLE VISCOUS FLUID AND A THERMOELASTIC PLATE INTERACTION PROBLEM IN 3D

下载PDF
导出
摘要 In this paper we deal with a nonlinear interaction problem between an incompressible viscous fluid and a nonlinear thermoelastic plate.The nonlinearity in the plate equation corresponds to nonlinear elastic force in various physically relevant semilinear and quasilinear plate models.We prove the existence of a weak solution for this problem by constructing a hybrid approximation scheme that,via operator splitting,decouples the system into two sub-problems,one piece-wise stationary for the fluid and one time-continuous and in a finite basis for the structure.To prove the convergence of the approximate quasilinear elastic force,we develop a compensated compactness method that relies on the maximal monotonicity property of this nonlinear function.
作者 Srdan TRIFUNOVIC Yaguang WANG Srdan TRIFUNOVIC;王亚光(School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China;School of Mathematical Sciences,MOE-LSC and SHL-MAC,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2021年第1期19-38,共20页 数学物理学报(B辑英文版)
基金 partially supported by National Natural Science Foundation of China(11631008)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部