期刊文献+

DOOB’S MAXIMAL INEQUALITIES FOR MARTINGALES IN VARIABLE LEBESGUE SPACE 被引量:1

下载PDF
导出
摘要 In this paper we deal with the martingales in variable Lebesgue space over a probability space.We first prove several basic inequalities for conditional expectation operators and give several norm convergence conditions for martingales in variable Lebesgue space.The main aim of this paper is to investigate the boundedness of weak-type and strong-type Doob’s maximal operators in martingale Lebesgue space with a variable exponent.In particular,we present two kinds of weak-type Doob’s maximal inequalities and some necessary and sufficient conditions for strong-type Doob’s maximal inequalities.Finally,we provide two counterexamples to show that the strong-type inequality does not hold in general variable Lebesgue spaces with p>1.
作者 Peide LIU 刘培德(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2021年第1期283-296,共14页 数学物理学报(B辑英文版)
基金 supported by the NSFC(11471251)。
  • 相关文献

参考文献2

二级参考文献1

共引文献8

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部