期刊文献+

基于卡尔曼滤波和改进DBSCAN聚类组合的GPS定位算法 被引量:7

GPS positioning algorithm based on Kalman filter and improved DBSCAN clustering combination
下载PDF
导出
摘要 实时获取智能移动终端的地理位置信息是增强现实(AR)实景智能导航系统实现的关键,为了提高智能终端GPS定位的精度,提出了一种基于卡尔曼滤波与改进的具有噪声的基于密度的聚类方法(DBSCAN)结合的GPS组合定位优化方法.通过对GPS系统采集到的位置坐标数据进行卡尔曼滤波,去除较大的数据波动,控制定位误差范围,采用DBSCAN聚类算法进行分类去噪和二次聚类,对类中数据求得算术均值和类间数据总数进行加权求重心,确定位置坐标.实验结果表明,提出的算法能有效提高GPS单点定位精度,减少定位误差,同时很好地满足了AR实景智能导航系统实时性和鲁棒性的要求. Real-time acquisition of geographic location information of smart mobile terminals is the key to the realization of an augmented reality(AR)real-scene smart navigation system.In order to improve the accuracy of GPS positioning for smart terminals,a GPS combined positioning optimization method based on Kalman filtering and improved DBSCAN clustering algorithm is proposed.Kalman filtering is performed on the position coordinate data collected by the GPS system to remove large data fluctuations and control the positioning error range.Using DBSCAN clustering algorithm for classification denoising and secondary clustering,the arithmetic mean value of the data in the class and the total number of data between the classes are weighted to find the center of gravity,and the position coordinates are determined.The experimental results show that the proposed algorithm can effectively improve the GPS single-point positioning accuracy,reduce positioning errors,and at the same time well meet the real-time and robustness requirements of the AR real-world intelligent navigation system.
作者 葛倩 侯守明 赵文涛 GE Qian;HOU Shouming;ZHAO Wentao(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454003,China)
出处 《全球定位系统》 CSCD 2021年第1期28-35,共8页 Gnss World of China
基金 国家重点研发项目(2018YFB1004900) 河南省科技攻关项目(172102210273) 河南省高校青年骨干教师培养计划项目(2018GGJS298)。
关键词 GPS 定位精度 卡尔曼滤波 具有噪声的基于密度的聚类方法(DBSCAN) 联合定位 GPS positioning accuracy Kalman filter DBSCAN clustering combined positioning
  • 相关文献

参考文献13

二级参考文献100

  • 1郑苗苗,吉根林.DK-Means——分布式聚类算法K-Dmeans的改进[J].计算机研究与发展,2007,44(z2):84-88. 被引量:9
  • 2程新文,陈性义.手持式GPS定位精度研究[J].测绘通报,2004(9):20-22. 被引量:47
  • 3陈默,高成发.GPS精密单点定位静态精度分析[J].现代测绘,2006,29(3):17-19. 被引量:12
  • 4饶俊,蒋敏志,肖金生.基于gpsOne的移动定位系统[J].武汉理工大学学报(信息与管理工程版),2006,28(11):183-186. 被引量:8
  • 5詹嘉,潘晓东,高昂.HOV车道的设计应用研究[J].交通与运输,2007,23(B07):17-20. 被引量:11
  • 6Koremura K,Asakura M,Matsumoto C.Position accuracy improvement using fuzzy processing on GPS data[A].Proceeding s of GPS 294[C].Alexandria,Virginia:The Institute of Navigation,1994.165-172.
  • 7Clarke L P,Ve1thuizen M R P,Camacho A,et al.MRI segmentation:methods and applications[J].Magnita Resonance Imaging,1995,13(3):343-368.
  • 8JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review [J]. ACM Computing Surveys, 1999,31 (3): 264-323.
  • 9DHILLON I, MODHA D. A data-clustering algorithm on distributed memory multiprocessors [ C ]. Proc of Workshop on Large-Scale Paral- lel Data Mining. Berlin : Springer, 2000 : 802- 802.
  • 10KRUENGKRAI C, JARUSKULCHAI C. A parallel learning algorithm for text classification[ C ]//Proc of the 8th ACM SIGKDD Internatio- nal Conference on Knowledge Discovery and Data Mining. New York: ACM Press,2002:201-206.

共引文献225

同被引文献79

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部