摘要
针对复杂背景中小目标的提取问题,提出了一种基于核模糊聚类多模型最小二乘支持向量机背景预测的红外小目标检测算法。首先,对训练样本用最近邻聚类法进行划分,获取聚类个数和初始聚类中心,并用核模糊C均值算法(KFCM)对聚类中心进行优化;其次,用LS-SVM计算模糊模型的回归参数,利用回归参数预测图像背景;之后,将原图像和预测图像相减得到残差图像;最后,依据最大类间绝对差选取阈值,从残差图像中分割出小目标。实验结果表明:文中算法相比传统基于模糊C均值(FCM)的小目标检测算法检测性能更优越。
出处
《物联网技术》
2021年第3期24-27,30,共5页
Internet of things technologies