期刊文献+

基于CNN-SVM的选煤厂浮选泡沫图像识别方法 被引量:6

The image identification method of flotation foam based on CNN-SVM at coal preparation plant
下载PDF
导出
摘要 以选煤厂煤泥浮选泡沫为分类对象,提出一种CNN—SVM混合模型,对煤泥浮选泡沫图像进行分类识别。试验采取山东某选煤厂的20000张浮选图像制作数据集,根据灰分不同将图像分成8个类别,并针对图像的噪声特点,对其去除高斯椒盐噪声并做了增强预处理。通过模型试验,相对于单独的CNN和SVM模型来说,这种复合模型更加可靠准确。 Taking the slime flotation foam at the coal preparation plant as the classification object,put forward a kind of CNN—SVM mixed network model for classifying the image of slime flotation foam.Adopting 20000 pieces of flotation image production data set at Shangdong Coal Preparation Plant and classified as 8 categories of images according to different ash content and aiming at the noise characteristics of image,get rid of Gaussian salt and pepper noise and make strong pre-treatment.Through model test,the accuracy rate of mixed model prediction can be at 87.66%.For the CNN and SVM model,this composite model is more accurate and has more strong robustness.
作者 孙友森 陈传海 杨志龙 王新欣 SUN You-sen(Zaozhuang Mining Group Coal Quality Management Office,Zaozhuang,Shandong 277000,China)
出处 《煤炭加工与综合利用》 CAS 2021年第2期8-11,I0002,共5页 Coal Processing & Comprehensive Utilization
关键词 选煤厂 卷积神经网络(CNN) 支持向量机(SVM) 浮选泡沫图像 识别 分类 coal preparation plant Convolutional Neural Network Support Vector Machines Flotation foam image identification classification
  • 相关文献

参考文献11

二级参考文献189

共引文献2430

同被引文献103

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部