摘要
以选煤厂煤泥浮选泡沫为分类对象,提出一种CNN—SVM混合模型,对煤泥浮选泡沫图像进行分类识别。试验采取山东某选煤厂的20000张浮选图像制作数据集,根据灰分不同将图像分成8个类别,并针对图像的噪声特点,对其去除高斯椒盐噪声并做了增强预处理。通过模型试验,相对于单独的CNN和SVM模型来说,这种复合模型更加可靠准确。
Taking the slime flotation foam at the coal preparation plant as the classification object,put forward a kind of CNN—SVM mixed network model for classifying the image of slime flotation foam.Adopting 20000 pieces of flotation image production data set at Shangdong Coal Preparation Plant and classified as 8 categories of images according to different ash content and aiming at the noise characteristics of image,get rid of Gaussian salt and pepper noise and make strong pre-treatment.Through model test,the accuracy rate of mixed model prediction can be at 87.66%.For the CNN and SVM model,this composite model is more accurate and has more strong robustness.
作者
孙友森
陈传海
杨志龙
王新欣
SUN You-sen(Zaozhuang Mining Group Coal Quality Management Office,Zaozhuang,Shandong 277000,China)
出处
《煤炭加工与综合利用》
CAS
2021年第2期8-11,I0002,共5页
Coal Processing & Comprehensive Utilization
关键词
选煤厂
卷积神经网络(CNN)
支持向量机(SVM)
浮选泡沫图像
识别
分类
coal preparation plant
Convolutional Neural Network
Support Vector Machines
Flotation foam image
identification
classification