期刊文献+

无线通信网络非等间距节点负载部署研究仿真 被引量:9

Research and Simulation of Non-Equal Distance Node Load Deployment in Wireless Communication Networks
下载PDF
导出
摘要 随着无线通信技术的发展,网络节点的部署问题成为无线网络中亟待解决的难题之一。由于网络负载配备不合理,严重影响了无线网络的工作计算效率。针对不等间距节点间存在负载不均衡和工作效率低等问题,提出采用分数阶达尔文粒子群算法,对无线通信网络中非等间距节点进行能量均衡和动态调节,根据网络节点的链路结构和相邻性的特点计算节点间的能量和距离,通过节点接收与传输距离对非等间距节点的能量进行计算,并将无线通信网络的信息流量与数据请求所需能量消耗采取提前估算处理,进而实现对各节点载荷的合理配置。搭建仿真平台,验证了提出的新型非等间距节点负载部署方法能够有效改善负载部署问题,节约更多的时间成本和功耗成本,有利于提高无线通信网络的效率,改善非等间距节点的覆盖率。 With the development of wireless technology,the deployment of wireless communication network nodes has become one of the most important problems in wireless networks.Due to the unreasonable network load,the working efficiency of the wireless network is seriously affected.In order to solve the problem of unbalanced load and low efficiency between nodes with unequal spacing,this paper used the fractional Darwin particle swarm optimization algorithm to perform energy balance and dynamic adjustment on non-equal nodes in wireless communication networks,according to the link structure of network nodes.The characteristics of the adjacency were used to calculate the energy and distance between the nodes.The energy of the non-equal-spacing nodes was calculated by the node receiving and transmitting distance,and the load deployment prediction was performed on the traffic and the number of requests of the wireless network,thereby performing a series of load on the network.The experimental results show that the Darwin particle swarm optimization algorithm can effectively improve the load deployment problem,and save more time cost and power consumption cost,which is beneficial to improve the efficiency of the wireless communication network and improves the coverage of non-equal spacing nodes.
作者 张耀 王珂琦 ZHANG yao;WANG ke-qi(Luohe Institute of Technology,Henan University of Technology,Luohe Henan 462000,China)
出处 《计算机仿真》 北大核心 2021年第2期141-144,共4页 Computer Simulation
关键词 无线通信网络 非等间距节点 能量均衡 负载部署 Wireless communication network Non-equal spacing node Energy balance Load deployment
  • 相关文献

参考文献5

二级参考文献49

  • 1李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,19(6):596-600. 被引量:52
  • 2Wu Yong-wei, Hwang Kai, Yuan Yu-lai, et al.. Adaptive workload prediction of grid performance in confidence windows[J]. IEEE Transactions on Parallel and Distributed Systems, 2010, 21(7): 925-938.
  • 3Gmach D, Rolia J, Cherkasova L, et al.. Workload analysi: and demand prediction of enterprise data cente: applications[C]. Proceedings of the 2007 IEEE 10tl International Symposium on Workload Characterization Washington, 2007: 171-180.
  • 4Ganapathi A, Chen Y, Fox workload modeling for the Workshop on Self-Managing 2010), California, 2010:87 92. A, et al. cloud[C]. Statistics-driven Proceedings of Systems (SMDB.
  • 5Khan A, Yah Xi-feng, Tao Shu, et al.. Workload characterization and prediction in the cloud: a multiple time series approach[C]. Proceedings of 3rd International Workshop on Cloud Management (CloudMan 2012), HAWAII. 2012: 1287-1294.
  • 6Roy N, Dubey A, and Gokhale A. Efficient autoscaling in the cloud using predictive models for workload forecasting[C1. Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD'll), Washington, 2011:500 507.
  • 7Xu Jing and Fortes J A B. Multi-objective virtual machine placement in virtualized data center environments[C]. Proceedings of the 2010 IEEE/ACM International Conference on Green Computing and Communications & International Conference on Cyber, Physical and Social Computing (GREENCOM-CPSCOM'10), Washington, 2010: 179-188.
  • 8Wang Meng, Meng Xiao-qiao, and Zhang Li. Consolidating virtual machines with dynamic bandwidth demand in data centers[C]. Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM 2011), Shanghai, 2010:2"1 75.
  • 9Beloglazov A and Buyya R. Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers[C]. Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science (MGC'10), New York, 2010:4:1 4:6.
  • 10Beloglazov A and Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centersfJ]. Concurrency and Computation: Practice and Experience ( CCPE), 2012, 24(13) 1397-1420.

共引文献78

同被引文献72

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部