期刊文献+

一种改进的彩色遥感图像边缘检测算法研究 被引量:8

An Improved Algorithm For Edge Detection of Color Remote Sensing Images
下载PDF
导出
摘要 针对当前方法在对彩色遥感图像做边缘检测时,普遍存在无法精确定位边缘、边缘信息获取不完整以及受到噪声影响等问题,提出一种改进的边缘检测算法。采用分数阶微分和Canny算子相结合的方法,设计一种分数阶微分模板应用到Canny算子中,同时引入高斯曲率滤波理论,在对彩色遥感图像做边缘检测的同时平滑图像,寻找最小正则化能量点,获得算法的最优参数,从而得到更优的彩色遥感图像边缘检测效果。经过对比实验后发现,改进的算法在对彩色遥感图像边缘检测的过程中,能够准确定位边缘获得更多的边缘信息,平滑图像噪声以及抑制噪声的非线性放大。 There are some generally problems such as the inability to accurately locate the edges,the incomplete acquisition of edge information and the influence of noise at the current method in the edge detection of color remote sensing images.To solve these problems,an improved edge detection algorithm is proposed.Using a combination of fractional differential and Canny operator,a fractional differential template was applied to the Canny operator.At the same time,the Gaussian curvature filtering theory was introduced to smooth the image,find the minimum regularized energy point and obtain the optimal parameters of the algorithm while performing edge detection on color remote sensing images.Thereby,better edge detection effect of color remote sensing image was obtained.The comparison experiments show that the improved algorithm can accurately locate the edge to obtain more edge information,smooth image noise and suppress nonlinear amplification of noise in the process of edge detection of color remote sensing images.
作者 韩佳雪 汪西原 张文坤 HAN Jia-xue;WANG Xi-yuan;ZHANG Wen-kun(Ningxia University,Physics and Electrical and Electronic Engineering,Yinchuan Ningxia 750021,China;Ningxia Desert Information Intelligent Perception Autonomous Region Key Laboratory,Yinchuan Ningxia 750021,China)
出处 《计算机仿真》 北大核心 2021年第2期383-388,共6页 Computer Simulation
基金 国家自然科学基金(41561087)。
关键词 边缘检测 分数阶微分 康尼算子 高斯曲率滤波 图像熵 峰值信噪比 Edge detection Fractional differential Canny operator Gaussian curvature filtering Image entropy Peak signal to noise ratio
  • 相关文献

参考文献11

二级参考文献101

  • 1林世毅,苏广川,陈东,韩晓广.基于小波变换和数学形态学的边缘检测法[J].仪器仪表学报,2004,25(z1):685-687. 被引量:24
  • 2李俊山,马颖,赵方舟,郭莉莎.改进的Canny图像边缘检测算法[J].光子学报,2011,40(S1):50-54. 被引量:64
  • 3袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J].电子学报,2004,32(10):1658-1665. 被引量:47
  • 4林生佑,石教英.基于HVS的彩色图像边缘检测算子[J].中国图象图形学报(A辑),2005,10(1):43-47. 被引量:17
  • 5Loverro A. Fractional calculus: history, definitions and applications for the engineer [OL]. [ 2007-07-14 ] . http:// www. nd. edu/-msen/Teaching/UnderRes/FracCalc, pdf.
  • 6Leu J S, Papamarcou A. On estimating the spectral exponent of fractional Brownian motion [J]. IEEE Transactions on Information Theory, 1995, 41( 1 ):233-244.
  • 7Liu S C, Chang S Y. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification [J]. IEEE Transactions on Image Processing, 1997, 6(8): 1176-1184.
  • 8Podlubny I. Fractional-order systems and PI^λD^μ-controllers [J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.
  • 9Engheta N. On fractional calculus and fractional multipoles in electromagnetism [J]. IEEE Transactions on Antennas Propagation 1996, 44(4) : 554-566.
  • 10Gilboa G, Zeevi Y Y, Sochen N A. Forward and backward diffusion processes for adaptive image enhancement denosing [J]. IEEE Transactions on Image Processing, 2002, 11(7): 689 -703.

共引文献229

同被引文献105

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部