期刊文献+

特征为2的素^(*)-代数上强保持2-新积

Strong 2-new product preserving maps on prime-algebras of characteristic 2
下载PDF
导出
摘要 设R是特征为2包含非平凡对称幂等元的单位素*-代数.对A,B∈R,定义A·B=AB+BA*为新积,(A·B)_(2)=(A·(A·B))为2-新积。设φ:R→R是满射.对所有A,B∈R,如果φ满足(φ(A)·φ(B))_(2)=(A·B)_(2)当且仅当对所有A∈R,存在α∈C_(s)且α^(3)=I使得φ(A)=αA,其中I是R的单位,C_(s)是R的对称可延拓中心.作为应用,得到了索C*代数和因子von Neumann代数上保持上述性质映射的结构. Let R be a unital prime *-algebra of characteristic 2 containing a nontrivial symmetric idempotent.For A,B ∈R,the new product and 2-new product are defined,respectively,by A·B=AB+BA* and(A·B)2=(A·(A·B)).Let φ:R→R be a surjective map.It is shown that φ satisfies(φ(A)·φ(B))2=(A·B)_(2) for all A,B∈R if and only if there exists α∈C_(S) with α3=I such that φ(A)=aA for all A∈R,where C_(S) is the symmetric extend centroid of R.As an application,such maps on prime C* algebras and factor von Neumann algebras are characterized.
作者 张芳娟 朱新宏 ZHANG Fang-juan;ZHU Xin-hong(School of Science,Xi’an University of Posts and Telecommunications,Xi'an 710121,Shaanxi,China;The 203rd Research Institute of China Armament Industry,Xi'an 710065,Shaanxi,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期223-227,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(11601420) 陕西省自然科学基础研究计划(2018JM1053) 陕西省教育厅科学计划(17JK0714).
关键词 素^(*)-代数 2-新积 保持 单位映射 prime*-algebra 2-new product preservers identity map|
  • 相关文献

参考文献6

二级参考文献46

  • 1张一方.从量子力学-相对论到物理学的基本原理和Noether定理的推广[J].云南大学学报(自然科学版),2007,29(4):375-381. 被引量:17
  • 2CHOOI W L, LIM M H. Linear preservers on triangular matrices[J]. Linear Algebra and its Applications, 1998, 269:241- 255.
  • 3FANG Li, JI Guoxing. Linear maps preserving products of positive or Hermitian matrices[J].Linear Algebra and its Applications, 2006, 461:601-611.
  • 4FANG Li, JI Guoxing, PANG Yongfeng. Maps preserving the idempotency of products of idempotent operators[J].Linear Algebra and its Applications, 2007, 426:40-52.
  • 5LI C K, TSING N K. Linear perserver problems : a brief introduction and some special techniques [J].Linear Algebra and its Applications, 1992, 162-164:217-235.
  • 6SEMRL P. Linear maps that preserve the nilpotent operators [ J ]. Acta Scientiarum Mathematicarum, 1995, 61:523-534.
  • 7WANG Meili, FANG Li, JI Guoxing. Linear maps preserving idempotency of products or triple Jordan products of operators[J]. Linear Algebra and its Applications, 2008, 429:181-189.
  • 8BRESAR M, SEMRL P. On locally linearly dependent operators and derivations [ J ]. Transactions of the American Mathematical Society, 1999, 351 : 1257-1275.
  • 9LI C K, SEMRL P, TSING N K. Maps preserving the nilpotency of products of operators [ J ]. Linear Algebra and its Applications, 2007, 424:222-239.
  • 10SEMRL P. Non-linear commutativity preserving maps[ J]. Acta Scientiarum Mathematicarum, 2005, 71:781-819.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部