摘要
利用离子束溅射结合后退火处理的方法制备了WO_(3-x)(0≤x≤1)薄膜,系统研究了不同退火气氛、退火温度和退火时间等条件对WO_(3-x)薄膜的晶体结构以及电学、光学和电致变色特性的影响。研究发现,当退火温度超过WO3结晶温度后,特别是在湿氧气氛下,退火温度越高、退火时间越长,WO_(3-x)薄膜的结晶度越好,除WO3主晶相显著增强以外,还会陆续出现O29W10、O49W18和WO_(2)等缺氧相;在干氧条件下,更高的退火温度和更长的退火时间都有助于降低WO_(3-x)薄膜的电阻值,也都有助于WO_(3-x)薄膜可见光透过率的提升;WO_(3-x)薄膜电致变色器件在632.8 nm波长处的光学调制值达到了70%左右,表现出良好的电致变色特性。
WO_(3-x)(0≤x≤1)thin films were prepared by the method of ion beam sputtering combined with post annealing treatment.The effects of different annealing atmospheres,annealing temperatures and annealing time on the crystal structure,and electrical,optical and electrochromic properties of the WO_(3-x)thin films were systematically studied.The research results show that when the annealing temperature exceeds the crystallization temperature of the WO3,especially under wet oxygen condition,the higher the annealing temperature and the longer the annealing time,the better the crystallinity of the WO_(3-x)thin films.In addition to the significant enhancement of main crystal phase of the WO3,the oxygen deficient phases such as O29 W10,O49 W18 and WO_(2)will also appear successively.Under dry oxygen condition,higher annealing temperature and longer annealing time can reduce the resistance and improve the visible light transmittance of the WO_(3-x)thin films.The optical modulation value of the electrochromic device based on the WO_(3-x)thin film reaches about 70%at a wavelength of 632.8 nm,exhibiting good electrochromic characteristics.
作者
苏江滨
王智伟
祁昊
潘鹏
朱贤方
蒋美萍
Su Jiangbin;Wang Zhiwei;Qi Hao;Pan Peng;Zhu Xianfang;Jiang Meiping(Experiment Center of Electronic Science and Technolog y,School of Microelectronics and Control Engineering,Changzhou University,Changzhou 213164,China;China Australia Joint Laboratory for Functional Nanomaterials,School of Physics Science and Technology,Xiamen University,Xiamen 361005,China;SELU-FEI Nano-Pico Center;Key Laboratory of MEMS of the Ministry of Education,Southeast University,Nanjing 210096,China)
出处
《微纳电子技术》
CAS
北大核心
2021年第1期65-71,共7页
Micronanoelectronic Technology
基金
江苏省自然科学基金资助项目(BK20191453)
常州大学大学生课外创新基金暨“挑战杯·卓越”项目(2020-Z13)。