期刊文献+

MATLAB计算集群在校园云上的SaaS自动化解决方案

The Automated SaaS Solution of MATLAB Computing Cluster on University Cloud
下载PDF
导出
摘要 随着云计算技术的快速发展,为用户提供软件服务SaaS解决方案成为各大云服务提供商关注的焦点。MATLAB作为一款数值分析与模型仿真软件,在高校的教学和科研领域应用广泛,但部署在传统IT基础设施上限制了其计算能力的扩展。针对该问题,提出MATLAB在校园云上的解决方案,通过高可用授权许可集群、分布式计算集群和科研模板等方式提供云上支持。该方案在简化计算环境部署的同时,通过隔离式计算集群设计,保障了系统的并发性和稳定性,计算能力较传统方式提升了3~10倍。在生产环境中被用户普遍使用,并收获了积极反馈,发挥了云计算对高校教学及科研的支撑作用。 With the development of cloud computing technology,user-oriented SaaS solution becomes an important focus of Cloud Ser⁃vice Providers.As a numerical analysis and model simulation software,MATLAB has been widely used in university teaching and re⁃search.However,deployment on traditional IT infrastructure limits the scalability of computing ability for MATLAB.To solve this prob⁃lem,a solution of MATLAB on campus cloud is proposed,which provides cloud support through high availability licensing cluster,distributed computing cluster and APP Template.The scheme simplifies the deployment of the computing environment,guarantees con⁃currency and stability of the system by cluster isolation design,and improves the computing ability by 3 to 10 times comparing with the traditional method.This solution has obtained wide use and positive feedback in production environment,helping cloud computing play a supporting role for university teaching and research.
作者 许天 姚青洲 文敏华 罗萱 XU Tian;YAO Qing-zhou;WEN Min-hua;LUO Xuan(Network&Information Center,Shanghai Jiao Tong University;Student Innovation Center,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《软件导刊》 2021年第3期1-6,共6页 Software Guide
基金 国家重点研发计划项目(2016YFB0201800)。
关键词 SAAS MATLAB 校园云 科研模板 OPENSTACK 分布式系统 并行计算 云计算 SaaS MATLAB campus cloud App templates OpenStack distributed system parallel computing cloud computing
  • 相关文献

参考文献3

二级参考文献26

  • 1G. Aceto, A. Botta, W. De Donato, and A. Pescape, Cloud monitoring: A Survey, Computer Networks, vol. 57, no. 9, pp. 2093-2115, 2013.
  • 2J. Wilkes, More Google cluster data, Google research blog, 2011.
  • 3C. Reiss, J. Wilkes, and J. L. Hellerstein, Google cluster- usage traces: Format + schema, Technical report, Google Inc., Mountain View, CA, USA, 2011.
  • 4S. Di, D. Kondo, and C. Franck, Characterizing cloud applications on a Google data center, in 42nd International Conference on Parallel Processing (ICPP), Lyon, France, 2013.
  • 5A. K. Mishra, J. L. Hellerstein, W. Cime, and C. R. Das, Towards characterizing cloud backend workloads: Insights from Google compute clusters, SIGMETRICS Perform. Eval. Rev., vol. 37, no. 4, pp. 34-41, 2010.
  • 6R. Kud, Apache Solr 4 Cookbook. Packt Publishing Ltd, 2013.
  • 7D. J. Barrett, MediaWiki. OReilly Media, Inc., 2008.
  • 8M. Krrtzsch, D. Vranderid, and M. Vrlkel, Semantic mediawiki, in The Semantic Web-ISWC 2006, Springer, 2006, pp. 935-942.
  • 9M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K. Webb, and J. Lepreau, Large-scale virtualization in the emulab network testbed, in USENIX Annual Technical Conference, 2008, pp. 113-128.
  • 10J. S. Ward and A. Barker, Observing the clouds: A survey and taxonomy of cloud monitoring, Journal of Cloud Computing, vol. 3, no. 1, pp. 1-30, 2014.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部