摘要
为了精准有效地实现永磁同步电机的温度预测,提出了一种基于近端策略优化(PPO)算法和强化学习(RL)网络的永磁同步电机温度预测模型,即PPO-RL模型,利用PPO算法定义模型训练的损失目标函数,选择Nadam算法作为模型优化器,通过强化学习的Actor-Critic框架最小化损失目标函数,进而完成模型的迭代训练。采用Kaggle公开的永磁同步电机测量数据集进行试验,结果表明,与指数加权移动平均法、循环神经网络和长短期记忆网络相比,PPO-RL模型具有更高的预测精度和可靠性。
For accurate and effective temperature prediction of Permanent Magnet Synchronous Machines(PMSM),this paper proposes a temperature prediction model based on Proximal Policy Optimization(PPO)and Reinforcement Learning(RL)network,the so-called PPO-RL model.This model defines the loss objective function of model training by PPO algorithm,selects Nadam algorithm as an optimizer,and minimizes the objective function through the actor-critic framework of reinforcement learning to complete model iterative training.Experiments are conducted on the data set of PMSM published by Kaggle,the results show that compared with the exponential weighted moving average method,Recurrent Neural Network(RNN)and Long Short Term Memory(LSTM),the PPO-RL model has higher prediction accuracy and reliability.
作者
岑岗
张晨光
岑跃峰
马伟锋
赵澄
Cen Gang;Zhang Chenguang;Cen Yuefeng;Ma Weifeng;Zhao Cheng(Zhejiang University of Science and Technology,Hangzhou 310023;Zhejiang University of Technology,Hangzhou 310014)
出处
《汽车技术》
CSCD
北大核心
2021年第3期26-32,共7页
Automobile Technology
基金
国家自然科学基金项目(61902349)
教育部规划基金项目(17YJA880004)
浙江省公益技术应用研究项目(LGF18F020011)。
关键词
永磁同步电机
温度预测
近端策略优化算法
强化学习
PMSM
Temperature prediction
Proximal policy optimization algorithm
Reinforcement learning