期刊文献+

大数据挖掘中的数据分类算法综述 被引量:9

Overview of Data Classification Algorithms for Big Data Mining
下载PDF
导出
摘要 随着信息技术领域的快速发展,各种数据信息量激增,大数据技术作为收集、存储、管理海量数据进而分析、预测某类人群习惯特点乃至某个行业发展趋势的重要手段,为管理决策者提供传统处理模式不能比拟的全面策略依据。这其中数据挖掘技术发挥了至关重要的作用。本文主要从作者实际工作经验入手,简要的分析大数据挖掘阶段的数据分类算法技术,希望可以为有关人员带来帮助。 With the rapid development of information technology,various kinds of data information surge,as an important means of collecting,storing and managing massive data to analyze and predict the habits and characteristics of a certain group of people and even the development trend of a certain industry,big data technology provides a comprehensive strategic basis for management decision makers that traditional processing mode cannot match.Among them,data mining technology plays a vital role.Based on the author's actual work experience,this paper briefly analyzes the data classification algorithm technology in the stage of big data mining,hoping to bring some help to relevant personnel.
作者 尹廷钧 李灵慧 周蕊 YIN Ting-jun;LI Ling-hui;ZHOU Rui(The PLA Strategic Support Force Information Engineering University,Zhengzhou Henan 450002)
出处 《数字技术与应用》 2021年第1期102-104,共3页 Digital Technology & Application
关键词 大数据 资料挖掘 分类算法 Big data Data mining Classification algorithm
  • 相关文献

参考文献2

二级参考文献16

  • 1Zhang H,Sheng S.Learning weighted naive Bayes with accurate ranking[C]∥Proceedings of the Fourth IEEE International Conference on Data Mining,Brighton,2004:567-570.
  • 2Zheng Z,Webb G I.Lazy learning of bayesian rules[J].Machine Learning,2000,41(1):53-84.
  • 3Wang Z H,Webb G I,Zheng F.Adjusting Dependence Relations for Semi-lazy TAN Classfier[M].Berlin:Springer,2003:453-456.
  • 4Yager R R.An extension of the naive Bayesian classifier[J].Information Sciences,2006,176(5):577-588.
  • 5Shahshahani B M,Landgrebe D A.The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(5):1087-1095.
  • 6Kulis B,Basu S,Dhillon I,et al.Semi-supervised graph clustering:a kernel approach[J].Machine learning,2009,74(1):1-22.
  • 7Su J,Shirab J S,Matwin S.Large scale text classification using semi-supervised multinomial naive bayes[C]∥Proceedings of the 28th International Conference on Machine Learning,Bellevue,WA,USA,2011:97-104.
  • 8Mann G S,McCallum A.Generalized expectation criteria for semi-supervised learning with weakly labeled data[J].The Journal of Machine Learning Research,2010,11:955-984.
  • 9Hall M,Frank E,Holmes G,et al.The WEKA data mining software:an update[J].ACM SIGKDD Explorations Newsletter,2009,11(1):10-18.
  • 10Zhu X J,Goldberg A B.Introduction to semi-supervised learning[J].Synthesis Lectures on Artificial Intelligence and Machine Learning,2009,3(1):1-130.

共引文献17

同被引文献84

引证文献9

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部