期刊文献+

一种无人直升机自主着舰相对位姿估计方法 被引量:1

A relative pose estimation method for autonomous landing of unmanned helicopter
下载PDF
导出
摘要 在无人直升机自主着舰中,鉴于视觉方法在机舰相对位姿估计中存在延迟的缺点,采用视觉惯导融合的方法对机舰相对位姿进行了估计。首先,建立了机舰相对位姿估计框架和相对惯导方程,在其基础上构建了基于IMU和视觉信息的状态方程和量测方程;然后,综合考虑视觉和IMU传感器的特点,采用MAEKF算法对视觉和IMU数据进行融合;最后,基于时间戳对量测数据的融合机制进行优化,并简化状态转移矩阵和系统噪声协方差矩阵的更新方式。仿真实验结果表明,该算法具有较高的精度和鲁棒性。 In the autonomous landing of unmanned helicopter,in view of the disadvantages of the vi-sual method in the pose estimation of unmanned helicopter relative to ship,the visual inertial navigation fusion method was adopted for the pose estimation.Firstly,the relative pose estimation frame and relative inertial navigation equation for unmanned helicopter and ship were established,on basis of which the state equation and measurement equation based on IMU and visual information were constructed.Secondly,considering the characteristics of vision and IMU sensors,the MAEKF algorithm was proposed to fuse the visual and IMU data.Finally,the fusion mechanism was optimized based on timestamp,and the updating mode of state transition matrix and system noise covariance matrix was simplified.Simulation results show that the algorithm has high precision and robustness.
作者 石章松 吴鹏飞 吴中红 王智 SHI Zhang-song;WU Peng-fei;WU Zhong-hong;WANG Zhi(College of Weaponry Engineering,Naval Univ.of Engineering,Wuhan 430033,China)
出处 《海军工程大学学报》 CAS 北大核心 2021年第1期1-8,共8页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(61773395)。
关键词 无人直升机自主着舰 相对位姿估计 视觉惯导融合 MAEKF算法 数据融合优化 unmanned helicopter autonomous landing relative pose estimation visual inertial navigation fusion MAEKF algorithm data fusion optimization
  • 相关文献

参考文献9

二级参考文献57

  • 1徐景硕,秦永元,顾冬晴.控制Kalman滤波器发散的方法研究[J].弹箭与制导学报,2004,24(S2):249-252. 被引量:6
  • 2高薪,卞鸿巍,傅中泽,张礼伟.捷联惯导晃动基座四元数估计对准算法[J].中国惯性技术学报,2014,12(6):724-727. 被引量:13
  • 3潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 4张锐,朱振才,张静,朱光沂.基于磁强计的微小卫星姿态确定[J].宇航学报,2006,27(4):578-581. 被引量:18
  • 5吉训生,王寿荣.MEMS陀螺仪随机漂移误差研究[J].宇航学报,2006,27(4):640-642. 被引量:55
  • 6D. B. Kingston, A. W. Beard. Real-time attitude and po- sition estimation for small UAVs using low-cost sensors. In Proceedings of the AIAA 3rd Unmanned Unlimited Tech- nical Conference, Workshop and Exhibit, AIAA, Chicago USA, pp. 6488-6496, 2004.
  • 7B. Ludington, E. Johnson, G. Vachtsevanos. Augmenting UAV autonomy. Robotics Automation Magazine, vol. 13, no. 3, pp. 63-71, 2006.
  • 8M. K. Kaiser, N. R. Gans, W. E. Dixon. Vision-based esti- mation for guidance, navigation, and control of an aerial vehicle. IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1064-1077, 2010.
  • 9S. Weiss, D. Scaramuzza, R. Siegwart. Monocular-SLAM- based navigation for autonomous micro helicopters in GPS- denied environments. Journa/ of Field Robotics, vol. 28, no. 6, pp. 854-874, 2011.
  • 10P. Yang, W. Y. Wu, M. Moniri, C. C. Chibelushi. A sensor- based SLAM algorithm for camera tracking in virtual stu- dio. International Journal of Automation and Computing, vol. 5, no. 2, pp. 152-162, 2008.

共引文献86

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部