期刊文献+

石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究 被引量:4

Simulation of interaction behavior between dislocation and graphene during nanoindentation of graphene/aluminum matrix nanocomposites
下载PDF
导出
摘要 石墨烯因其优异的力学性能已成为增强金属基复合材料的理想增强体.然而,目前对石墨烯/金属基复合材料在纳米压痕过程中嵌入石墨烯与位错之间的相互作用仍不清晰.本文采用分子动力学模拟方法,对90°,45°和0°位向的石墨烯/铝基复合材料进行了纳米压痕模拟,研究了压痕加载和卸载过程中石墨烯/铝基复合材料的位错形核及演化,以获取不同位向的石墨烯与位错的相互作用机制,并分析其对塑性区的影响.研究发现,石墨烯可以有效阻碍位错运动,并且石墨烯会沿着位错滑移方向发生弹性变形.在纳米压痕过程中,位错与不同位向石墨烯之间的相互作用差异导致塑性区的变化趋势不同.研究结果表明,在石墨烯/铝基复合材料中,位向不同的石墨烯对位错阻碍强度和方式不同,且石墨烯位向为45°的复合材料的硬度高于其他模型.此外,石墨烯/铝基复合材料的位错线总长度的演化规律与石墨烯位向紧密相关.本文研究可为设计和制备高性能石墨烯/金属基复合材料提供一定的理论指导. Graphene has been thought to be an ideal reinforcement material for metal matrix composite due to its superior mechanical properties and unique two-dimensional geometry.However,the deformation mechanism of graphene/aluminum matrix composite is still unclear.In this paper,molecular dynamics simulation is used to elucidate the evolution details of the dislocation microstructure and the underlying interaction behavior between dislocation and graphene during nanoindentation of the graphene/aluminum matrix composite with various graphene orientations.To this end,four different cases,i.e.the pure aluminum and the graphene/aluminum matrix composite with the graphene orientation of 90°,45°and 0°are examined,respectively.Based on the force-indentation depth curve,the interaction behavior between dislocation and graphene and its effect on the plastic zone are analyzed.The results indicate that the graphene can act as an effective dislocation motion barrier,and the elastic deformation of graphene can occur locally along the direction of dislocation slip.Using the visualization technique of dislocation extraction algorithm,the nucleation and propagation of dislocation are investigated.The results show that the differences in interaction behavior between dislocation and graphene with various orientations affect the spreading trend of the plastic zone and the blocking strength of graphene to dislocation.For the composite with the graphene orientations of 45°and 0°,the interaction between graphene and dislocation causes the number of dislocations to increase.Additionally,the plastic zone of the composite with the graphene orientation of 45°is tangent to two symmetrical graphene sheets.For the composite with the graphene orientation of 90°,the interaction between graphene and dislocation shortens the total length of the dislocation line,and the volume shrinkage of plastic zone is most significant after indenter retraction.Here,the hardness is also calculated to quantitatively evaluate the influence of graphene orientation on the mechanical properties of graphene/aluminum matrix composite.The hardness of the composite with the graphene orientation of 45°is highest,which is due to the decrease of the volume of the plastic zone and the increase of dislocation number.The decrease of the hardness of the composite with the graphene orientation of 90°is attributed to the reduction of dislocation number in the plastic zone.However,for the composite with the graphene orientation of 0°,the interaction between graphene and dislocation results in the softening effect,because of a wide range of elastic deformation in the graphene plane.The study can provide a certain theoretical guidance for designing and preparing the high-performance graphene/metal matrix composites.
作者 汉芮岐 宋海洋 安敏荣 李卫卫 马佳丽 Han Rui-Qi;Song Hai-Yang;An Min-Rong;Li Wei-Wei;Ma Jia-Li(College of Materials Science and Engineering,Xi’an Shiyou University,Xi’an 710065,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第6期182-190,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11572259) 陕西省自然科学基金(批准号:2018JM1013) 西安石油大学材料科学与工程省级优势学科项目(批准号:YS37020203) 西安石油大学研究生创新与实践能力培养项目(批准号:YCS18211006)资助的课题.
关键词 分子动力学模拟 力学性质 纳米压痕 石墨烯/铝基复合材料 molecular dynamics simulation mechanical property nanoindentation graphene/aluminum matrix composite
  • 相关文献

参考文献3

二级参考文献36

  • 1崔新林,祝文军,邓小良,李英骏,贺红亮.冲击波压缩下含纳米孔洞单晶铁的结构相变研究[J].物理学报,2006,55(10):5545-5550. 被引量:11
  • 2Chen D. Feng H. Li J 2012 Chem. Rev. 1126027.
  • 3Wilson N R. Pandey P A. Beanland R. Young R J. Kinloch I A. Gong L. Liu Z. Suenaga K. Rourke J P, York S J. Sloan J 2009 ACS Nano 3 2547.
  • 4黄乐旭,陈远富,李萍剑,黄然2012物理学报61158101.
  • 5Pasricha R. Gupta S. Srivastava A K 2009 Small S 2253.
  • 6Chandra S. Bag S. Bhar R. Pramanik P 2011 J. Nanopart. Res. 132769.
  • 7Stankovich S. Dikin D A. Dommett G H B. Kohlhaas K M. Zimney E J. Stach E A. Piner R D. Nguyen S B T. Ruoff R S 2006 Nature 442 282.
  • 8Kim H, Abdala A A, Macosko C W 20 I 0 Macromolecules 43 6515.
  • 9Chen S. Zhu J. Wu X, Han Q, Wang X 2010 ACS Nano 42822.
  • 10Zhi Y. Gao R. Hu N. Chai J. Cheng Y. Zhang L. Wei H. Kong E S W. Zhang Y 2011 Nano-Micro. Lett, 4 I.

共引文献14

同被引文献27

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部