期刊文献+

基于数据驱动的办公建筑电耗预测方法 被引量:1

Power Consumption Prediction Method of Office Building Based on Data Driven Model
下载PDF
导出
摘要 对建筑电耗的有效预测能够为用能诊断、运行优化及区域能源管理提供有效的支撑。基于支持向量回归,建立复合的数据驱动模型来预测典型公共建筑的逐时耗电量。该模型的核心为根据电耗数据,利用关联挖掘并结合模糊聚类划分电耗类型,采用支持向量回归模型和小波分解技术实现对建筑电耗的非线性平稳预测和修正。实例应用结果表明:关联挖掘与聚类算法的结合可以实现对建筑电耗特征的清晰归类,小波分解的引入能够增强支持向量回归模型对于弱规律数据预测的泛化能力。 The dynamic prediction of building energy consumption can provide effective support for energy diagnosis,operation optimization and regional energy management. Based on support vector regression,a composite data-driven model is established to predict the hourly power consumption of typical public buildings. Using the method of association mining and fuzzy clustering to classify the power consumption data,further support vector regression model and wavelet decomposition technology are used to realize the nonlinear prediction and correction of building power consumption,which is the core of the model. The application shows that the combination of association mining and clustering algorithm can achieve a clear classification of building electricity consumption characteristics,and the introduction of wavelet decomposition can enhance the generalization ability of support vector regression model for weak regular data prediction.
作者 成雄蕾 王雯翡 张成昱 王沨枫 CHENG Xiong-lei;WANG Wen-fei;ZHANG Cheng-yu;WANG Feng-feng(China Academy of Building Research,Beijing 100013,China)
出处 《建筑节能(中英文)》 2021年第2期36-42,共7页 Building Energy Efficiency
基金 “十三五”国家重点研发计划资助项目(2017YFC0704200)。
关键词 数据驱动 模糊聚类 关联分析 小波分解 data-driven model fuzzy clustering association mining wavelet decomposition
  • 相关文献

参考文献7

二级参考文献60

  • 1张光华,傅志盛,田红光.造纸湿部因素灰关联分析法的适宜性研究[J].中国造纸学报,2000,15(1):78-81. 被引量:2
  • 2张顶学,关治洪,刘新芝.基于PSO的RBF神经网络学习算法及其应用[J].计算机工程与应用,2006,42(20):13-15. 被引量:44
  • 3谢艳群,李念平,陈淑琴,孙凤梅,倪吉,周慧.长沙市居住建筑能耗调查及偏相关分析[J].煤气与热力,2007,27(5):85-88. 被引量:22
  • 4Curtiss P S. Energy management in central HVAC plants using neural networks[ J]. ASHARE Trains, 1994, 100( 1 ) : 476 -493.
  • 5Lyu Shiqin, Wu Can, Zhang Sufang. Application of the RBF method to the estimation of temperature on the external surface in laminar pipe flow[ EB/OL]. (2013 - 09 - 02) [ 2014 - 05 - 13 ]. http://dx, doi. org/10. 1155/2013/205169.
  • 6Xie Xiaodan, Xia Bin, Yu Jun. A comprehensive evaluation method based on PCA and BP neural network[ C]//2012 Fifth In- ternational Conference on Information and Computing Science. Liverpool: IEEE, 2012:71 -74.
  • 7魏望,吴金顺,张维亚,等.基于正交实验方法对建筑围护结构能耗的因素分析[C]//杜修力.低碳经济与土木工程科技创新:2010中国国际建筑科技大会论文集.北京:科学出版社,2010.
  • 8Wong S L,Wan K K W,Lam TNT.Artificial neural networks for energy analysis of office buildings with daylighting[J].Applied Energy,2010,87(2):551-557.
  • 9Azadeh A,Ghaderi S F,Tarverdian S,et al.Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption[J].Applied Mathematics and Computation,2007,186(2):1731-1741.
  • 10Mathieu J L,Price P N,Kiliccote S,et al.Quantifying changes in building electricity use,with application to demand response[J].IEEE Transactions on Smart Grid,2011,2(3):507-518.

共引文献115

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部