期刊文献+

一种基于迁移学习的栅格型图表自动分类方法 被引量:3

An Automatic Classification Method of Grid Chart Based on Transfer Learning
下载PDF
导出
摘要 图表自动分类是实现图表内容解译及信息提取的前提。基于Inception V3模型,采用迁移学习的方法,对图表自动分类方法进行了研究,提出了对5类栅格图表进行自动分类的模型。通过与传统的图表自动分类方法的对比试验,测试了在不同学习率参数下模型的分类效果,给出了针对结构化特征的指数衰减学习率的数学表达式。结果表明:采用迁移学习策略,重点改进学习率参数,可以克服传统图表分类方法的不足,较为高效准确地实现对栅格型图表的自动分类工作。 The automatic classification of charts is the premise of the content interpretation and information extraction.Based on the Inception V3,an automatic classification model for five kinds of raster charts was proposed by means of transfer learning.Through the contrast experiment with the traditional automatic classification method,the classification performance of this model under different learning rate parameters was tested,and the mathematical expression of exponential decay learning rate for structural features was given.The results indicate that using the transfer learning strategy and improving the learning rate parameters can overcome the shortcomings in the traditional chart classification methods,and realize the automatic classification of raster chart more efficiently and accurately.
作者 韩冰 王光霞 陈令羽 王慧芳 张蓝天 HAN Bing;WANG Guangxia;CHEN Lingyu;WANG Huifang;ZHANG Lantian(Information Engineering University, Zhengzhou 450001, China;61206 Troops, Beijing 100043, China;61646 Troops, Beijing 100043, China)
机构地区 信息工程大学 [ [
出处 《测绘科学技术学报》 CSCD 北大核心 2021年第1期75-82,共8页 Journal of Geomatics Science and Technology
基金 国家重点研发计划项目(2017YFB0503500)。
关键词 深度学习 卷积神经网络 Inception V3模型 迁移学习 图像分类 栅格图表 deep learning convolutional neural network Inception V3 transfer learning image classification raster chart.
  • 相关文献

参考文献6

二级参考文献211

  • 1谢顺平,都金康,王腊春,顾国琴.基于游程编码的GIS栅格数据矢量化方法[J].测绘学报,2004,33(4):323-327. 被引量:33
  • 2黄波,陈勇.矢量、栅格相互转换的新方法[J].遥感技术与应用,1995,10(3):61-65. 被引量:37
  • 3陈军.基础地理信息系统的特性初析[J].地理信息世界,2005,3(4):8-11. 被引量:12
  • 4朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,4..
  • 5[11]MICHELE CROSETTO,STEFANO TARANTOLA,ANDREA SALTELLI.Sensitivity and uncertainty analysis in spatial modelling based on GIS[J].Agriculture,Ecosystems and Environment,2000,81:71-79.
  • 6章毓晋.图像分割[M].北京:科学出版社,2000.9-106.
  • 7Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 8Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 9Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 10Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.

共引文献1070

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部