期刊文献+

伺服电动缸传动系统刚度建模与前馈控制 被引量:3

Stiffness modeling and feedforward control of servo electric cylinder drive system
原文传递
导出
摘要 在精准控制的要求下,伺服电动缸需保证很高的定位精度,然而在重载工况下,伺服电动缸会发生较大的弹性变形,严重影响伺服电动缸的定位精度。为此,本文对伺服电动缸传动系统进行了机械刚度建模,通过实验验证刚度模型的有效性,并加入了基于刚度模型的前馈控制算法。研究结果表明:所建立的伺服电动缸传动系统刚度模型有效,加入基于刚度模型的前馈控制算法后,伺服电动缸的定位精度得到显著提高。 Under the requirement of precise control,the servo electric cylinder needs to ensure a high positioning accuracy. However,under heavy load,the servo electric cylinder will have a large elastic deformation,which seriously affects its positioning accuracy. To solve this problem,first,the mechanical stiffness model of the servo electric cylinder transmission system is established,which is verified through experiments. Then, a feedforward control algorithm based on the stiffness model is added. The research results show that the established mechanical stiffness model of the established servo electric cylinder transmission system is effective.. The addition of the feedforward control algorithm can significantly improve the positioning accuracy of the servo electric cylinder.
作者 翟富刚 尹燕斌 李超 田纬 乔子石 ZHAI Fu-gang;YIN Yan-binb;LI Chao;TIAN Wei;QIAO Zi-shi(School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China;Institute of Mechanical Engineering,Nanjing Institute of Technology,Nanjing 211167,China;Hebei Innovation Center for Equipment Lightuueight Design and Manufacturing,Qinhuangdao 066004,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第2期442-449,共8页 Journal of Jilin University:Engineering and Technology Edition
基金 国家重点研发计划项目(2018YFB2000700)。
关键词 机械工程 伺服电动缸 定位精度 刚度模型 前馈控制 mechanical engineering servo motor cylinder positioning accuracy stiffness model feedforward control
  • 相关文献

参考文献7

二级参考文献47

  • 1高钦和.大型装置双缸同步起竖系统建模与仿真[J].系统仿真学报,2004,16(6):1135-1138. 被引量:2
  • 2吴南星,胡如夫,孙庆鸿.数控车床丝杠进给系统刚度对定位精度的影响[J].中国工程科学,2004,6(9):46-49. 被引量:31
  • 3Chen W D, Yung K L, Cheng K W. Profile tracking performance of a low ripple hybrid stepping motor servo drive [J]. Control Theory and Applications, 2003, 150(1) :69-76.
  • 4Chen W D, Yung K L, Cheng K W. Enhancing low- speed performance of hybrid stepping motor servo by ripple canceling technique: Electric Machines and Drives [C] // International Conference on Electric Machines and Drives, Seattle, WA, 1999=147-149.
  • 5Schweid S A, Lofthus R M, McInroy J E. Velocity regulation of stepper motors amidst constant dis- turbances[C]// Proceedings of the IEEE Conference on Control Applications, NY, USA, 1995: 1041- 1046.
  • 6Hasanien H M. FPGA implementation of adaptive ANN controller for speed regulation of permanent magnet stepper motor drives[J]. Energy Conversion and Management, 2011, 52(2):1252-1257.
  • 7Moren J B C. A computational model of emotional learning in the amygdale: From animals to animals 6 [C] // Proceedings of the 6th International Conference on the Simulation of Adaptive Behavior, Cam bridge, 2000: 611-636.
  • 8Daryabeigi E, Markadeh G A, Lucas C. Interior permanent magnet synchronous motor, with a developed brain emotional learning based intelligent controller[C]//IEEE International Conference on E- lectric Machines and Drives, Miami, FL, 2009: 1633-1640.
  • 9Fard F T P, Shahgholian G, Rajabi A, et al. Brain emotional learning based intelligent controller for Permanent magnet synchronous motor[C] // Proceedings of IPEC, Singapore, 2010 : 989-993.
  • 10Panah P G, Shafiei A, Parsa P A, et al. Velocity control of a PMLSM using a brain emotional learn ing based intelligent control strategy[C]//IEEE In ternational Conference on System Engineering and Technology, Shah Alam, 2011:47-52.

共引文献31

同被引文献30

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部