摘要
环氧复合泡沫采用空心玻璃微珠改性环氧树脂,对于降低电子封装材料的热致应力非常有效.为提高环氧复合泡沫的设计效率,本文提出了一种宏细观结合的环氧复合泡沫热致应力分析方法.首先通过细观力学建立不同微珠粒径、壁厚、微珠体积分数等微观结构参数下环氧复合泡沫的等效性能预测模型,然后结合宏观线弹性热应力分析模型,进行环氧复合泡沫电子封装的热致应力分析,最终获得了一种电子封装热致应力与环氧复合泡沫微观结构之间的关联模型.基于模型探讨了微珠壁厚、微珠体积分数、微珠配比等微观结构参数对封装热致应力的影响规律,并基于两种典型封装结构证明了方法的可行性,研究成果对于开发低应力封装技术、提高电子封装的可靠性及环境适应性具有重要的意义.
Epoxy resin syntactic foams are a class of composite materials that are synthesized by dispersing hollow particle fillers in the matrix materials, which is an efficient way to decrease the thermal-induced stress in electronic packaging and insulating encapsulation. In order to improve the design efficiency, an approach combining macro-mechanics and micro-mechanics methods was proposed to analyze thermal-induced stress in this paper. First, the equivalent properties of syntactic foams were predicted using micro-mechanics in which the effects of the hollow glass micro-balloon diameters, wall thicknesses and volume fractions were included. The macro thermal-induced stresses in electronic packaging were predicted using the linear-elastic method. Lastly, the relationship between the micro parameters of the hollow glass micro-balloon and the thermal-induced stresses in the electronic packaging was obtained. The thermal-induced stresses were predicted for two typical electronic packaging structures. This work is of great importance to develop the low-stress technique, increase reliability and environment adaptability of the electronic package.
作者
李想
都焕亮
陈静
宋文波
李悦芳
赵剑
LI Xiang;DU Huanliang;CHEN Jing;SONG Wenbo;LI Yuefang;ZHAO Jian(Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621999,Sichuan,China;Shanghai Academy of Spaceflight Technology,Shanghai 201109,China;School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China)
出处
《力学季刊》
CAS
CSCD
北大核心
2020年第4期718-727,共10页
Chinese Quarterly of Mechanics
基金
中物院超精密加工技术重点实验室资助(ZM18004)
航空科学基金(201909038001)
上海市自然科学基金(20ZR1462600)
上海航天科技创新基金(SAST202020)。
关键词
环氧复合泡沫
热应力
细观力学模型
电子封装
epoxy syntactic foam
thermal-induced stress
micromechanics
electronic package