期刊文献+

非线性耦合同向回转的双偏心转子振动系统同步行为研究 被引量:4

Synchronization Behavior of Two Co-rotating Rotors in a Nonlinear Coupled System
原文传递
导出
摘要 随着振动系统逐渐朝着大型化、重型化的方向发展,大激振力振动系统是未来发展一个较热的趋势。基于这一特殊背景,提出了非线性(拉簧)耦合同向回转的双偏心转子振动系统及其同步问题。首先基于拉格朗日方程建立了系统动力学方程;随后采用运动分离法建立系统慢变参数的积分方程,推导出了系统实现同步的同步条件和稳定性准则;其次,通过数值分析研究了系统结构参数对系统同步能力及同步特性的影响;继而,采用龙格库塔法建立了非线性耦合同向回转的双偏心转子振动系统的机电耦合仿真模型,开展了系统的同步状态与系统机电耦合的动力特性的仿真分析;最后设计了相关试验装置,开展了同步试验测试。研究结果表明,系统的同步行为主要受拉簧和支撑弹簧的刚度系数、激振电机的位置参数等的影响;激振电机的相位差随着拉簧刚度系数的增加逐渐稳定在零度附近,相应地系统同步状态从反相同步逐渐变成同相同步,理论研究和试验结果能较好吻合。所有研究为研发高效节能的大型振动机械提供指导作用,同时研究成果也对振动同步领域共性问题的解决具有促进作用。 With the vibrating system are evolving towards designing large-sized and heavy-duty, a large exciting force of the system is one big developmental tendency. Based on the special background, a synchronization issue of a new mechanism driven by two co-rotating motors coupled with a tensile-spring is proposed. Firstly, the differential equations of the dynamic system are derived by using Lagrange’s equations;Then, the integral equations of the slow-changing parameters are obtained by adopting the method of direct separation of motions, and the synchronization condition and the stability criterion of the system are acquired;Next, analyzing influence of the parameters on the synchronous capacity and the synchronous characteristics of the system by the numerical analysis;Additionally, an electromechanical coupling model of the vibrating system is established by applying the Runge-Kutaa routine with adaptive stepsize control, some simulation analysis with the relationship between the synchronous state of the system and the dynamical characteristics of the electromechanical coupling system are carried out;Finally, an experimental model is designed, and some synchronous tests are carried out. It is found that the synchronous behavior of the vibrating system is mainly influenced by the stiffness of the tensile-spring and the supporting springs,the mounting position of two motors, etc. The stable phase difference between the two rotors gradually tends to zero with the increase of the stiffness of coupling spring, and the antiphase synchronization is converted into the in-phase synchronization, the theoretical results quite coincide with experiment results. All these researches will provide guidance for developing design the energy-efficient large-sized vibrating screens, and which can improve the solution to common problems in the field of vibrating synchronization.
作者 杜明俊 侯勇俊 吴毅 余成 侯度宇 DU Mingjun;HOU Yongjun;WU Yi;YU Cheng;HOU Duyu(School of Mechanical Engineering,Southwest Petroleum University,Chengdu 610500;School of intelligent manufacturing,Panzhihua University,Panzhihua 610700;School of Intelligent Manufacturing,Chengdu Technological University,Chengdu 611730)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2020年第23期150-164,共15页 Journal of Mechanical Engineering
基金 四川省科技创新苗子工程重点项目(2018RZ0101) 四川省科技计划项目(2019YFG0317)资助项目。
关键词 双偏心转子 非线性耦合 同步特性 稳定性 试验 two co-rotating rotors nonlinear coupled system the synchronous characteristics stability experiment
  • 相关文献

参考文献2

二级参考文献13

  • 1于洪洁,刘延柱.对称非线性耦合混沌系统的同步[J].物理学报,2005,54(7):3029-3033. 被引量:28
  • 2BLEKHMAN I I,FRADKOV A L,NIJMEIJER H,et al.On self-synchronization and controlled synchronization[J].Systems & Control Letters,1997,31:299-305.
  • 3BLEKHMAN I I,FRADKOV A L,TOMCHINA O P,et al.Self-synchronization and controlled synchronization:General definition and example design[J].Mathematics and Computers in Simulation,2002,58:367-384.
  • 4井上顺吉,荒木嘉昭,林节子.振动机械の自己同期化(倍数次周期)[J].日本机械学会论文集,1951,42:103-110.
  • 5WEN B C.Research concerning frequency entrainment of nonlinear self-synchronous vibrating machines[C]// Proceedings of 9th International Conference of Nonlinear Oscillations,Kiev,USSR,1981:32-40.
  • 6PECORA L M,CARROLL T L.Synchronization in chaotic system[J].Physical Review Letter,1990,64:821-824.
  • 7QUINN D,RAND R,BRIDGE J.The dynamics of resonance capture[J].Nonlinear Dynamics,1995,8:1-20.
  • 8RICHARD H.Resonant capture and separatrix crossing in dual spin spacecraft[J].Nonlinear Dynamics,1999,18:159-184.
  • 9MAINIE R,REHACER J.Projective synchronization in three dimentional chaotic systems[J].Physical Review Letters,1999,82 (15):3 042-3 045.
  • 10ZHANG T X,WEN B C,FAN J.Study on synchronization of two eccentric rotors driven by hydraulic motors in one vibrating systems[J].Shock and Vibration,1997,4(5-6):305-310.

共引文献13

同被引文献40

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部