期刊文献+

EXISTENCE OF UNBOUNDED SOLUTIONS FOR A n-TH ORDER BVPS WITH A p-LAPLACIAN

原文传递
导出
摘要 This paper considers the solvability of boundary value problems with a p-Laplacian {(φ(u^((n-1))(t)))'=q(t)f(t,u(t),…,u^((n-1))(t)),0<t<+∞,u^((i))(0)=Ai,i=0,1,…,n-3,u^((n-2))(0)-au^((n-1))(0)=B,u^((n-1))(+∞)=C.By using the methods of upper and lower solution, the schauder fixed point theorem, and the degree theory, we obtain the existence of one and triple solutions. This paper generalizes several problems due to the dependence on the p-Laplacian operator, the n-1-th derivative not only in the differential equation but also in the boundary conditions. The most interesting point is that the solutions may be unbounded.
机构地区 School of Science
出处 《Annals of Applied Mathematics》 2020年第4期391-406,共16页 应用数学年刊(英文版)
基金 This research was supported by the National Natural Science Foundation of China(No.11601493) by the Fundamental Research Funds for the Central Universities.
  • 相关文献

参考文献1

二级参考文献1

  • 1郭大钧,Nonlinear Integral Equations in Abstract Space,1996年

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部