期刊文献+

基于多目标多约束的生产制造业的计划排产问题研究 被引量:2

Research on Planning and Scheduling of Equipment Manufacturing Industry Based on Multi-objective and Multi-constraint
下载PDF
导出
摘要 保证交期是生产制造业的生产制造的核心竞争点之一,在这种情况下,制造系统都要求最小化生产完成时间。最小化生产完成时间基本上涉及两个目标,即最小化机器闲置时间和最小化订单提前率/延迟率。必须通过考虑所有约束条件(例如优先级、可用机器、机器转换、机器设置、机器容量、大量库存等)来实现这两个目标的最小化。这需要通过高级计划和排程(APS)来实现。该文提出了一种具有迭代搜索的遗传(GA)算法来找到APS问题的最优解,应用于解决生产制造业多目标多约束的计划排产过程问题。该算法在满足所有约束的情况下最小化机器闲置时间和订单提前率/延迟率,从而最小化生产完成时间,确保产品交期。该文使用Python开发了APS混合整数编程模型,该模型使用迭代搜索技术来提高系统效率并在短时间内产生最佳解决方案。 Guaranteed delivery time is one of the core competition points in the equipment manufacturing industry. In this case,the manufacturing system requires the minimum makespan time. Minimizing makespan time basically involves two goals,namely,minimizing machine idle time and order forward/delay rate. These two goals must be minimized by considering all constraints(such as priority,available machines,machine conversion,machine settings,machine capacity,large inventory,etc.). This needs to be achieved through advanced planning and scheduling(APS). This paper proposes a genetic(GA) algorithm with iterative search to find the optimal solution of the APS problem,which is used to solve the multi-objective and multi-constrained planning and scheduling process of the equipment manufacturing industry. The algorithm minimizes machine idle time and order lead/delay rate while meeting all constraints,thereby minimizing production completion time and ensuring product delivery. This article uses Python to develop an APS mixed integer programming model,which uses iterative search technology to improve system efficiency and produce the best solution in a short time.
作者 解云龙 袁鲁平 朱宁帅 XIE Yun-long;YUAN Lu-pin;ZHU Ning-shuai(Shandong Liancheng Precision Manufacturing Co.,Ltd.,Jining 272100,China)
出处 《自动化与仪表》 2021年第3期104-108,共5页 Automation & Instrumentation
关键词 多目标多约 计划排产 迭代搜索算法 高级计划和排程 multi-objective and multi-constraint planning and scheduling iterative search algorithm advanced planning and scheduling(APS)
  • 相关文献

参考文献3

二级参考文献24

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:110
  • 2李海峰,吴慧中.元模型驱动的产品生命周期管理系统的设计与实现[J].计算机集成制造系统,2005,11(7):963-968. 被引量:8
  • 3CHRYSSOLOURIS G,CHAN S.An Integrated Approach to Process Planning anti Scheduling[ J ] .Annals of the CIRP, 1985,34( 1 ) :413-417.
  • 4BECKENDORFF U, KREUTZFELDT J, UL1.MANN W. Re- active Workshop Scheduling Based on Alternative Routings [ C ]. Proceedings of a Conference on Factory Automation and Information Management. Boca Raton, Florida: CRC Press Inc., 1991:875-885.
  • 5KHOSHNEVIS B,CHEN Q M.lntegration of Process Plan- ning and Scheduling Function [ C ]. IIE Integrated Systems Conference & Society for Integrated Manufacturing Confer- ence Proceedings. Atlanta: Industrial Engineering & Man- agement Press, 1989 : 415-420.
  • 6ZHANG H C.1PPM a Prototype to lntegraled Process Plan- ning and Job Shop Scheduling Functions [ J ].Annals of the CIRP, 1993,42( 1 ) :513-517.
  • 7LARSEN N E. Methods for Integration of Process Planning and Production Planning[ J ] .International Journal of Com- puter Integrated Manufacturing, 1993,6(1/2) :152-162.
  • 8QIAO Lihong.Establishing Geometry and Functional Param- eters Relationships through Regression Analysis and their Assistance to Product Customization [ J ]. International Jour- nal of Advanced Manufacturing Technology, 2012, 58 ( 5/ 8 ) : 727- 740.
  • 9国务院.中国制造2025[EB/OL]. 2015[2015-07-01]. Http://news.china.com/ domestic/945/20150519/ 19710486.html.
  • 10Yin Y M, Gao C L . Study on smart object-based control model for cyber-physical systems. Applied Mechanics and Materials, 2014, 3138(536):1195-1199.

共引文献12

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部