期刊文献+

二次损失函数下B-F准备金的信度估计 被引量:2

Reliability Estimation of B-F Reserve under Quadratic Loss Function
下载PDF
导出
摘要 在B-F准备金模型中,事故年索赔均值的估计至关重要,而传统B-F模型准备金的估计依赖于精算师的先验估计,具有一定的主观性.本文利用信度理论对事故年索赔均值进行估计,得到二次损失函数下事故年索赔均值的信度估计.该方法与传统的B-F估计和链梯法估计进行比较,结果表明二次损失函数下B-F准备金的信度估计是可行的. In the B-F reserve model,the estimation of the average annual accident claim is very important,while the estimation of the traditional B-F reserve model relies on the prior estimation of actuaries and has certain subjectivity.This paper estimates the average annual accident claim by using the reliability theory,and obtains the reliability estimation of the average annual accident claim under the quadratic loss function.Compared with the traditional B-F estimation and the chain ladder estimation,the results show that the reliability estimation of the B-F reserve under the quadratic loss function is feasible.
作者 王金瑞 邹敏雪 李智明 吴黎军 WANG Jinrui;ZOU Minxue;LI Zhiming;WU Lijun(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830046,China)
出处 《新疆大学学报(自然科学版)(中英文)》 2021年第2期153-158,共6页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 国家自然科学基金(U1703237) 新疆维吾尔自治区自然科学基金(XJEDU2017M001)。
关键词 链梯法 B-F法 二次损失函数 信度估计 Chain ladder method B-F method quadratic loss function reliability estimation
  • 相关文献

参考文献2

二级参考文献34

  • 1Buhlmann H. Experience rating and credibility I[J]. Astin Bulletin, 1967, 4(3): 199-207.
  • 2Buhlrnann H, Gisler A. A course in credibility theory and its applications[M). Netherlands: Springer, 2005.
  • 3Mauller A. Stop-loss order for portfolios of dependent risks[J]. Insurance: Mathematics and Economics, 1997, 21: 219-223.
  • 4Dhaene J, Denuit M, Goovaerts M J, et al. The concept of comonotonicity in actuarial science and nance: theory[J]. Insurance: Mathematics and Economics, 2002, 31: 3-33.
  • 5Yeo K L, Valdez E A. Claim dependence with common effects in credibility models[J]. Insurance: Mathematics and Economics, 2006, 38: 609-629.
  • 6Wen Limin, Wu Xianyi, Zhou Xian. The credibility premiums for models with dependence induced by common effects[J]. Insurance: Mathematics and Economics, 2009, 44(1): 19-25.
  • 7Wen Limin, Wang Wei, Yu Xueli. Credibility models with error uniform dependence[J]. Journal of East China Normal University: Natural Science, 2009(5): 118-126.
  • 8Bolanco C, Guillen M, Pinquet J. Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects[J]. Insurance: Mathematics and Economics, 2003, 33(2): 273-282.
  • 9Purcaru 0, Denuit M. On the dependence induced by frequency credibility models[J]. Belgian Actuarial Bulletin, 2002, 2(1): 73-79.
  • 10Purcaru 0, Denuit M. Dependence in dynamic claim frequency credibility models[J]. Astin Bulletin, 2003, 33(1): 23-40.

共引文献12

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部