期刊文献+

云资源分配优化的非合作博弈定价机制 被引量:2

Pricing Mechanism Based on Non-cooperative Game for Optimizing Cloud Resource Allocation
下载PDF
导出
摘要 云资源提供者向用户提供服务,要争取更多用户,服务所需资源的定价就至关重要。以在满足用户需求的同时达到最大化收益为目标,提出了一种在云计算环境中基于非合作博弈模型的资源定价机制。在博弈模型中,用户效用模型对应定价的资源需求函数,云提供者收益模型对应需求的资源价格函数,根据需求提供不同价格资源的云提供者和依据所提价格更新需求的用户组成博弈结构,博弈Nash均衡定义为供求双方决定的最优定价。从理论上证明了所提博弈机制存在资源定价的Nash均衡解且是唯一的,仿真实验验证算法是有效可行的。 To compete for cloud users,it is critically important for each cloud resource provider to select an optimal price which is best corresponds to their service qualities,to remain attractive to cloud users.In this paper,the resource pricing problem is defined as the non-cooperative game model in cloud computing.Our objective of this game is to enable cloud providers to maximize their profit while satisfying cloud users by maximizing their utility.In this game model,the utility of users is modeled as a function of resource demand with a corresponding price,and the profit of the cloud provider is modeled as a function of resource price with a corresponding demand from users.The game consists of the cloud provider suggesting differentiated resource prices according to the demand and users updating their requests in view of the proposed price.The Nash equilibrium solution of our game is defined as the optimal suggested prices by the cloud provider and the optimal user demands.It proves that the proposed game model has Nash equilibrium of resrouce pricing,and this Nash equlibrium solution is unique.The experimental results show that our game algorithm performs better.
作者 庄小叶 李轲 ZHUANG Xiaoye;LI Ke(Department of Information Engineering,Weifang Engineering Vocational College,Qingzhou 262500,China;Department of Operational Support,Rocket Sergeant Academy,Qingzhou 262500,China)
出处 《新乡学院学报》 2021年第3期48-52,共5页 Journal of Xinxiang University
基金 山东省教育厅科技项目(20180019)。
关键词 云计算 资源定价 非合作博弈 NASH均衡 cloud computing resource pricing non-cooperative game Nash equilibrium
  • 相关文献

参考文献8

二级参考文献79

  • 1VELTE A T,VELTE T J,ELSENPETER R.云计算实践指南[M].周庆辉,陈宗斌,译.北京:机械工业出版社,2010:251-252.
  • 2Sui Xin,Leung Ho-Fung.An Adaptive Bidding Strategy in Multi-round Combinatorial Auctions for Resource Allocation[C]//Proc.of International Conf.on Tools with Artificial Intelligence.Singapore:IEEE Computer Society,2008.
  • 3Teng Fei,Magoules F.Resource Pricing and Equilibrium Allo-cation Policy in Cloud Computing[C]//Proc.of International Conf.on Computer and Information Technology.[S.l.]:IEEE Computer Society,2010.
  • 4Mihailescu M,Teo Y M.Dynamic Resource Pricing on Federated Clouds[C]//Proc.of International Conf.on Cluster,Cloud and Grid Computing.[S.l.]:IEEE Computer Society,2010.
  • 5Shang Shifeng,Jiang Jinlei,Wu Yongwei,et al.DABGPM:A Double Auction Bayesian Game-based Pricing Model in Cloud Market[C]//Proc.of International Federation for Information Processing.Brisbane,Australia:[s.n.],2010.
  • 6峁诗松,概率论与数理统计教程[M].北京:高等教育出版社,2004,
  • 7陈红,任怡,刘晓建.云计算平台下计费机制研究[J].计算机科学,2011,38(8):48-52.
  • 8Armbrust M,Fox A,Griffith R. Above the clouds: A Berkeleyview of cloud computing[R]. UCB/EECS-2009-28. 2009-02-10.
  • 9Li Ting, Li Xiao-long. Research on CloudComputing Resource Management[C]// 2010 International Conference on Computa- tional and Information Sciences. 2010.
  • 10Buyya R. Economic~based distributed resource management and scheduling for Grid computing[D]. Monash University, 2002.

共引文献41

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部