期刊文献+

基于改进蚁群算法的无人机安全航路规划研究 被引量:14

Safety route planning of UAV based on improved ant colony algorithm
下载PDF
导出
摘要 为减少无人机(UAV)坠毁伤人事故发生,首先,通过UAV飞行空域栅格化,以每飞行小时地面人员伤亡数量为指标定义栅格风险因子,创建航路安全代价期望函数;然后,考虑UAV航路代价,探究距离和安全双重约束条件下的航路规划方法,并采用改进蚁群算法规划最优航路;最后,通过城市物流UAV配送场景验证该模型的有效性,并对比是否考虑安全因素对规划航路结果的差异。结果表明:考虑安全因素的规划航路飞行距离和飞行时间增加在30%以内,但航路总行程伤亡人员数量降低可达60%。 In order to reduce UAV crash accidents,firstly,air route safety cost function was established with casualty of ground personnel per flight hour as index to define risk factor of grids through UAV air space gridding Then,route planning method under double restraints of distance and safety was explored considering UAV route cost,and optimal route was planned based on improved ant colony algorithm.Finally,validity of the planning model was verified by urban UAV logistics distribution scenario before difference in planning results with safety factors being taken into account or not.was compared.The results indicate that the air route planning model considering such factors can improve flying distance and time by within 30%,but the casualty rate through the whole route can be reduced by as much as 60%.
作者 韩鹏 张冰玉 HAN Peng;ZHANG Bingyu(School of Air Traffic Management,Civil Aviation University of China,Tianjin 300300,China)
出处 《中国安全科学学报》 CAS CSCD 北大核心 2021年第1期24-29,共6页 China Safety Science Journal
基金 天津市教委科研计划项目(2019KJ128)。
关键词 改进蚁群算法 无人机(UAV) 航路规划 安全代价 栅格风险因子 improved ant colony algorithm unmanned aerial vehicle(UAV) route planning safety cost grids risk factor
  • 相关文献

参考文献7

二级参考文献54

  • 1黄文刚,张怡,姜文毅,廉晶晶.基于改进稀疏A~*算法的无人机航路规划[J].遥测遥控,2012,33(6):12-16. 被引量:8
  • 2Hai-bin Duan,Xiang-yin Zhang,Jiang Wu,Guan-jun MaSchool of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,P.R.China.Max-Min Adaptive Ant Colony Optimization Approach to Multi-UAVs Coordinated Trajectory Replanning in Dynamic and Uncertain Environments[J].Journal of Bionic Engineering,2009,6(2):161-173. 被引量:33
  • 3董世友,龙国庆,祝小平.无人机航路规划的研究[J].飞行力学,2004,22(3):21-24. 被引量:14
  • 4Bortoff S A. Path planning for unmanned air vehicles. In: Proceedings of the American Control Conference. Chicago: IEEE, 2000. 364-368.
  • 5Esmat R, Hossein N,Saeid S. GSA: A gravitational search algorithm. Inform Sci, 2009, 179: 2232-2248.
  • 6Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942-1948.
  • 7Li C S, Zhou J Z. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energ Convers Manage, 2011, 52: 374-381.
  • 8Storn R, Price K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J Global Optim, 1997, 11: 341-359.
  • 9Xu C F, Duan H B, Liu F. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning. Aerosal Sci Tech, 2010, 14: 535-541.
  • 10Sarafrazi S, Nezamabadi-pour H, Saryazdi S. Disruption: A new operator in gravitational search algorithm. Sci Iran, 2011,18: 539-548.

共引文献113

同被引文献106

引证文献14

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部