期刊文献+

基于开关式深度神经网络的拟人化自动驾驶决策算法 被引量:2

Human-imitative Autonomous Driving Decision-making Algorithm Based on Switched Deep Neural Networks
下载PDF
导出
摘要 基于深度神经网络的拟人化自动驾驶为复杂环境下的高级自动驾驶提供了新的思路,但网络的封闭性会导致上层驾驶指令很难进入网络,为此,设计了一种开关式深度神经网络,该网络由卷积神经网络层和长短期记忆网络层组成,在两个子网络间嵌入了具有开关性质的特征选择层,并通过不同的驾驶指令选择激活不同的特征分支,从而完成了相应的驾驶任务。实车测试结果表明,开关式深度神经网络不会显著增加模型的推理时间,同时该网络实现了根据输入的不同驾驶指令完成车辆在路口的左转、右转、直行和绕障行为。 Human-imitative autonomous driving based on deep neural networks provided a new idea for advanced autonomous driving under complex environments.However,it was difficult for upper driving instructions to enter the network due to the closeness of the network.Therefore,a switched deep neural network was designed,which consisted of convolutional neural network layers and long short-term memory network layers.A feature selection network layer was embedded in the two sub-networks,and then different feature branches were activated by different driving instructions to complete the corresponding driving tasks.Vehicle test results show that the switched deep neural network does not greatly increase the inference time and the different driving tasks will be accomplished according to the different driving instructions,such as the left-turn,right-turn,straight-go at the intersection and obstacle-bypass in the roads.
作者 王玉龙 裴锋 刘文如 闫春香 周卫林 李智 WANG Yulong;PEI Feng;LIU Wenru;YAN Chunxiang;ZHOU Weilin;LI Zhi(GAC Automotive Research&Development Center,Guangzhou,510641;State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha,410082)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2021年第6期689-696,共8页 China Mechanical Engineering
基金 湖南大学汽车车身先进设计制造国家重点实验室开放基金(31825011)。
关键词 开关式深度神经网络 拟人化 自动驾驶 决策算法 switched deep neural network human-imitative autonomous driving decision-making algorithm
  • 相关文献

参考文献5

二级参考文献27

  • 1马莹,王建强,徐友春,李克强.智能车辆车道保持系统[J].ITS通讯,2004,6(1):7-12. 被引量:7
  • 2王荣本,马雷,施树明,郭烈.高速智能车辆变结构转向控制器切换超平面选取方法[J].机械工程学报,2004,40(10):82-86. 被引量:9
  • 3高振海,姜立勇.汽车车道保持系统的BP神经网络控制[J].中国机械工程,2005,16(3):272-277. 被引量:8
  • 4郭磊,李克强,王建强,连小珉.一种基于特征的车辆检测方法[J].汽车工程,2006,28(11):1031-1035. 被引量:22
  • 5Cerone V,Milanese M,Regruto D. Combined Automatic Lane-keeping and Driver's Steering Through a 2-DOF Control Strategy[J].IEEE Transactions on Control Systems Technology,2009,(01):135-142.
  • 6Tsugawa S. Vision-based Vehicles in Japan:Machine Vision Systems and Driving Control Systems[J].IEEE Transactions on Industrial Electronics,1994,(04):398-405.
  • 7Marino R,Scalzi S,Orlando G. A Nested PID Steering Control for Lane Keeping in Vision Based Autonomous Vehicles[A].St.Louis,2009.2885-2890.
  • 8Wu Shinq-Jen,Chiang Hsin-Han,Perng JauWoei. The Heterogeneous Systems Integration Design and Implementation for Lane Keeping on a Vehicle[J].IEEE Transactions on Intelligent Transportation Systems,2008,(02):246-263.
  • 9Sidhu A S. Development of an Autonomous Test Driver and Strategies for Vehicle Dynamics Testing and Lateral Motion Control[D].Ohio State:The Ohio State University,2010.
  • 10Wise M,Hsu J. Application and Analysis of a Robust Trajectory Tracking Controller for Under-Characterized Autonomous Vehicles[A].San Antonio,2008.274-280.

共引文献78

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部